2009
//
Network Medicine

Time to CARE: a collaborative engine for practical disease prediction

Abstract
The monumental cost of health care, especially for chronic disease treatment, is quickly becoming unmanageable. This crisis has motivated the drive towards preventative medicine, where the primary concern is recognizing disease risk and taking action at the earliest signs. However, universal testing is neither time nor cost efficient. We propose CARE, a Collaborative Assessment and Recommendation Engine, which relies only on patient’s medical history using ICD-9-CM codes in order to predict future disease risks. CARE uses collaborative filtering methods to predict each patient’s greatest disease risks based on their own medical history and that of similar patients. We also describe an Iterative version, ICARE, which incorporates ensemble concepts for improved performance. Also, we apply time-sensitive modifications which make the CARE framework practical for realistic long-term use. These novel systems require no specialized information and provide predictions for medical conditions of all kinds in a single run. We present experimental results on a larg Medicare dataset, demonstrating that CARE and ICARE perform well at capturing future disease risks.

..

More publications
M. C. Gonzalez, A.-L. Barabási

Nature Physics 3, 224-225 (2007)

view
D.-S. Lee, H. Burd, J. Liu, E. Almass, O. Weist, A.-L. Barabási, Z. N. Oltvai, V. Kapatra

Journal of Bacteriology 191:12, 4015–4024 (2009)

view
Q. K. Beg, A. Vazquez, J. Ernst, M. A. de Menezes, Z. Bar-Joseph, A.-L. Barabási, Z. N. Oltvai

Proceedings of the National Academy of Sciences 104, 31 (2007)

view