Three-dimensional Toom model: connection to the Anisotropic Kardar-Parisi-Zhang Equation

A three-dimensional Toom model is defined and the properties of the interface separeting the two stable phases are investigated. Using symmetry arguments we show that in the zero-noise limit the model has only nonequilibrium fluctuations and that the scaling is decribed by the anisotropic Kardar-Parisi-Zhang equation. The scaling exponents are determined numerically and good agreement with the theoretical predictions is found.


More publications
A.-L. Barabási, R. Bourbonnais, M. Jensen, J. Kertesz, T. Vicsek, Y.-C. Zhang

Physical Review A 45, R6951–R6954 (1992)

S. V. Buldyrev, L.A.N. Amaral, A.-L. Barabási, S.T. Harrington, S. Havlin, R. Sadr-Lahijani, H.E. Stanley

Fractals 4, 307–319 (1996)

P. Jensen, A.-L. Barabási, H. Larralde, S. Havlin, H.E. Stanley

Fractals 4, 321–329 (1996)