2016
//
Science of Success

Quantifying the Evolution of Individual Scientific Impact

Abstract
Despite the frequent use of numerous quantitative indicators to gauge the professional impact of a scientist, little is known about how scientific impact emerges and evolves in time. Here, we quantify the changes in impact and productivity throughout a career in science, finding that impact, as measured by influential publications, is distributed randomly within a scientist’s sequence of publications. This random-impact rule allows us to formulate a stochastic model that uncouples the effects of productivity, individual ability, and luck and unveils the existence of universal patterns governing the emergence of scientific success. The model assigns a unique individual parameter Q to each scientist, which is stable during a career, and it accurately predicts the evolution of a scientist’s impact, from the h-index to cumulative citations, and independent recognitions, such as prizes.

..

More publications
B.C. Coutinho, S. Hong, K. Albrecht, A. Day, A.-L. Barabasi, P. Torrey, M. Vogelsberger, L. Hernquist

arXiv:1604.03236v2 (13 April 2016)

view
G. Basler, Z. Nikoloski, A. Larhlimi, A.-L. Barabasi, and Y.-Y. Liu

Genome Research 7: 26, 956-968 (2016)

view
D. Gomez-Cabrero, J. Menche, C. Vargas, I. Cano, D. Maier, A.-L. Barabasi, J. Tegner, J. Roca (Synergy-COPD Consortia)

BMC Bioinformatics 17: 1291 (2016)

view