Network Science
Network Medicine

Network link prediction by global silencing of indirect correlations

Predictions of physical and functional links between cellular components are often based on correlations between experimental measurements, such as gene expression. However, correlations are affected by both direct and indirect paths, confounding our ability to identify true pairwise interactions. Here we exploit the fundamental properties of dynamical correlations in networks to develop a method to silence indirect effects. The method receives as input the observed correlations between node pairs and uses a matrix transformation to turn the correlation matrix into a highly discriminative silenced matrix, which enhances only the terms associated with direct causal links. Against empirical data for Escherichia coli regulatory interactions, the method enhanced the discriminative power of the correlations by twofold, yielding >50% predictive improvement over traditional correlation measures and 6% over mutual information. Overall this silencing method will help translate the abundant correlation data into insights about a system's interactions, with applications ranging from link prediction to inferring the dynamical mechanisms governing biological networks.


More publications
Soodabeh Milanlouei, Giulia Menichetti, Yanping Li, Joseph Loscalzo, Walter C. Willett & Albert-László Barabási

Nature Communications volume 11, Article number: 6074 (2020)

Yanchen Liu, Nima Dehmamy & Albert-László Barabási

Nature Physics (2020)

Forrest Hooton, Giulia Menichetti & Albert‐László Barabási

Scientific Reports volume 10, Article number: 16191 (2020)