2018
//
Network Medicine

Network-based approach to prediction and population-based validation of in silico drug repurposing

Abstract

Here we identify hundreds of new drug-disease associations for over 900 FDA-approved drugs by quantifying the network proximity of disease genes and drug targets in the human (protein–protein) interactome. We select four network-predicted associations to test their causal relationship using large healthcare databases with over 220 million patients and state-of-the-art pharmacoepidemiologic analyses. Using propensity score matching, two of four network-based predictions are validated in patient-level data: carbamazepine is associated with an increased risk of coronary artery disease (CAD) [hazard ratio (HR) 1.56, 95% confidence interval (CI) 1.12–2.18], and hydroxychloroquine is associated with a decreased risk of CAD (HR 0.76, 95% CI 0.59–0.97). In vitro experiments show that hydroxychloroquine attenuates pro-inflammatory cytokine-mediated activation in human aortic endothelial cells, supporting mechanistically its potential beneficial effect in CAD. In summary, we demonstrate that a unique integration of protein-protein interaction network proximity and large-scale patient-level longitudinal data complemented by mechanistic in vitro studies can facilitate drug repurposing.

..

More publications
Albert-László Barabási, Giulia Menichetti & Joseph Loscalzo

Nature Food 1, 33-37 (2019)

view
Roel Vermeulen, Emma L. Schymanski, Albert-László Barabási, Gary W. Miller

Science 24 Jan 2020: 367, 6476, 392-396

view
Marc Santolini and Albert-Laszlo Barabasi

PNAS | vol. 115 | no. 27 | E6375–E6383

view