//
Surfaces/Materials

Multifractality of growing surfaces

Abstract
We have carried out large-scale computer stimulation of experimentally motivated (1+1)- dimensional modes of kinetic surface roughening with power-law-distributed amplitudes of uncorrelated noise. The appropriately normalized qth-order correlation function of the height differences Cq(x)=<|h(x+x')-h(x')|q> shows strong multifractal scaling behavior up to a crossover length depending on the system size, i.e. Cq(x)~xqHq, where Hq is a continuously changing nontrivial function. Beyond the crossover length conventional scaling is found.

..

More publications
I. Daruka, A.-L. Barabási

Physical Review Letters 78, 3027 (1997)

view
S.V. Buldyrev, A.-L. Barabási, S. Havlin, J. Kertesz, H.E. Stanley, H.S. Xenias

Physica A 191, 220–226 (1992)

view
J. Kim, B. Kahng, A.-L. Barabási

Applied Physics Letters 81, 3654-3656 (2002)

view