Network Science

Measuring preferential attachment in evolving networks

A key ingredient of many current models proposed to capture the topological evolution of complex networks is the hypothesis that highly connected nodes increase their connectivity faster than their less connected peers, a phenomenon called preferential attachment. Measurements on four networks, namely the science citation network, Internet, actor collaboration and science coauthorship network indicate that the rate at which nodes acquire links depends on the node’s degree, offering direct quantitative support for the presence of preferential attachment. We find that for the first two systems the attachment rate depends linearly on the node degree, while for the last two the dependence follows a sublinear power law.


More publications
Yanchen Liu, Nima Dehmamy & Albert-László Barabási

Nature Physics (2020)

Forrest Hooton, Giulia Menichetti & Albert‐László Barabási

Scientific Reports volume 10, Article number: 16191 (2020)

Albert-László Barabási, Giulia Menichetti & Joseph Loscalzo

Nature Food 1, 33-37 (2019)