Lee et al. reply to Dynamics of ripening of self-assembled II-VI semiconductor quantum dots

Despite extensive investigation, little is still known about the physical mechanisms responsible for quantum dot (QD) formation in II-VI semiconductor systems, especially when compared to their group-IV or III-V counterparts. However, the distinct chemical and microscopic features characteristic of the various materials make these diverse systems rather exciting to study and compare. We therefore welcome the Comment by Kratzert et al. [1] that sheds new light on the CdSe island formation on ZnSe. The method used by them—in situ ultrahigh vacuum atomic force microscopy (AFM)—provides valuable information that was not accessible before: it allows one to probe the dynamics of QD formation without external influences (such as the influence of the atmosphere), and it offers minimum delay between QD formations and their characterization. Specifically, and in contrast with our findings [2], these new results do not manifest room temperature ripening of CdSe islands. These new observations, combined with a number of other results recently reported (see below), suggest the existence of three distinct island types:


More publications
A.-L. Barabási, R. Bourbonnais, M. Jensen, J. Kertesz, T. Vicsek, Y.-C. Zhang

Physical Review A 45, R6951–R6954 (1992)

S. V. Buldyrev, L.A.N. Amaral, A.-L. Barabási, S.T. Harrington, S. Havlin, R. Sadr-Lahijani, H.E. Stanley

Fractals 4, 307–319 (1996)

P. Jensen, A.-L. Barabási, H. Larralde, S. Havlin, H.E. Stanley

Fractals 4, 321–329 (1996)