Effect of surface morphology on the sputtering yields: II. Ion sputtering from rippled surfaces

Off-normal ion bombardment of solid targets with energetic particles often leads to development of periodically modulated structures on the surfaces of eroded materials. Ion-induced surface roughening, in its turn, causes sputtering yield changes. We report on a comprehensive theoretical study of the effect of rippled surface morphology on the sputtering yields. The yield is computed as a function of the parameters characterizing the surface morphology and the incident ion beam, using the Sigmund’s theory of ion sputtering. We find that the surface morphology development may cause substantial variations in the sputter yields, depending on a complex interplay between the parameters characterizing the ripple structure and the incident ion beam. For certain realizations of the ripple structure, the surface morphology is found to induce enhanced, relative to the flat surface value, sputtering yields. On the other hand, there exist regimes in which the sputtering yield is suppressed by the surface roughness below the flat surface result. We confront the obtained theoretical results with available experimental data and find that our model provides an excellent qualitative and, in some cases, quantitative agreement with the results of experimental studies.


More publications
A.-L. Barabási, R. Bourbonnais, M. Jensen, J. Kertesz, T. Vicsek, Y.-C. Zhang

Physical Review A 45, R6951–R6954 (1992)

S. V. Buldyrev, L.A.N. Amaral, A.-L. Barabási, S.T. Harrington, S. Havlin, R. Sadr-Lahijani, H.E. Stanley

Fractals 4, 307–319 (1996)

P. Jensen, A.-L. Barabási, H. Larralde, S. Havlin, H.E. Stanley

Fractals 4, 321–329 (1996)