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Network medicine framework reveals generic herb-
symptom effectiveness of traditional Chinese medicine
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Understanding natural and traditional medicine can lead to world-changing drug discoveries. Despite the ther-
apeutic effectiveness of individual herbs, traditional Chinese medicine (TCM) lacks a scientific foundation and is
often considered a myth. In this study, we establish a network medicine framework and reveal the general TCM
treatment principle as the topological relationship between disease symptoms and TCM herb targets on the
human protein interactome. We find that proteins associated with a symptom form a network module, and
the network proximity of an herb’s targets to a symptom module is predictive of the herb’s effectiveness in
treating the symptom. These findings are validated using patient data from a hospital. We highlight the trans-
lational value of our framework by predicting herb-symptom treatments with therapeutic potential. Our
network medicine framework reveals the scientific foundation of TCM and establishes a paradigm for under-
standing the molecular basis of natural medicine and predicting disease treatments.
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INTRODUCTION
Understanding the therapeutic effects of traditional and natural
medicine can lead to drug discoveries that reshape world welfare.
For example, aspirin (acetylsalicylic acid) is extracted from willow
bark, a traditional medicine practice since thousands of years ago
(1). More recently, the 2015 Nobel Prize was given to the discovery
of the malaria-treating artemisinin, extracted from qinghao (Arte-
misia annua), an herb used in traditional Chinese medicine
(TCM) (2). As a famous practice of natural medicine, TCM is a per-
sonalized and holistic approach to treating diseases using natural
medical products tailored to a patient’s symptoms, offering a rich
pool of therapeutic candidates (3–5). However, although clinical
data and studies of single herbs/prescriptions (6, 7) showed that
certain TCM herbal treatments are effective, the general mechanis-
tic principle of how TCM selects herbs to treat diseases remains
unknown. Two major challenges exist in understanding the mech-
anistic root of TCM: (i) The lack of scientific foundation in classic
TCM theory obstructs the understanding of TCM from a modern
biomedical perspective; (ii) the complexity of herbs’ chemical com-
position and the often-unknown therapeutic protein targets of the
chemicals makes conventional brute-force herb/chemical screening
infeasible. Therefore, to understand and exploit the therapeutic
mechanisms of TCM, it is necessary to establish a framework that

can connect TCM knowledge to modern biomedical science and
can handle the complexity of herb composition and target data.

An in silico strategy to understand the therapeutic effect of a
natural product is to leverage themultiple protein targets of its com-
posing chemicals via network pharmacology (8) and network med-
icine (9–12). Network pharmacology emphasizes the “network
target, multi-components” paradigm that complements conven-
tional research’s focus on single targets. This approach has helped
researchers identify herbal chemicals with therapeutic potentials,
better understand mechanisms of action, and discover drugs (13–
15). However, existing TCM network pharmacology studies are
limited to single herbs or single prescriptions, unable to explain
the totality of TCM herb-disease relations. Moreover, many
network pharmacology approaches only consider herbs/drugs that
target disease genes directly, unable to account for network effects,
e.g., when the impact of perturbing a target emerges further down-
stream and is mediated by protein interactions. Here, we propose
avenues to overcome these limitations and improve our understand-
ing of the therapeutic effects of natural products.

Network medicine leverages the human protein-protein interac-
tome (PPI) to reveal disease and drug patterns (9). The PPI is a
network consisting of nodes that are proteins that link to each
other by physical (binding) interactions. Network medicine
showed that disease-associated proteins tend to form locally clus-
tered modules in the PPI, and shorter network distance between
two disease modules is indicative of their comorbidity (16); more-
over, drug efficacy can be predicted by leveraging the network rela-
tion between drug targets and disease modules (17, 18), leading to
the development of drug-repurposing methodologies (19). These
methods have been successful in identifying drug-repurposing can-
didates for coronavirus disease 2019 (COVID-19) and in under-
standing the network patterns of effective drugs (20).
Furthermore, some of these tools have already affected clinical prac-
tice, like the network-based diagnostic tool available for patients
with rheumatoid arthritis (21). Unlike earlier network pharmacol-
ogy approaches, network medicine characterizes drug-disease
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relations by capturing the network effects based on protein interac-
tions from the PPI, enabling more accurate predictions.

In this study, we develop a network medicine framework that
theorizes the scientific basis of TCM as the topological relationship
between symptom-associated proteins and herb targets on the
protein interactome. By focusing on symptoms rather than diseases,
our approach aligns with the TCM practice of diagnosing and treat-
ing patients based on their symptom phenotypes. We discover that
proteins associated with a symptom tend to cluster into a local PPI
module, and the network proximity between an herb’s targets and a
symptom module is indicative of the herb’s effectiveness in treating
the symptom. We validate our network medicine framework with
empirical data and hospital patient data and highlight its potential
in identifying herb discovery/repurposing opportunities. The
design of our study is presented in Fig. 1.

RESULTS
Symptom-associated proteins form modules in the protein
interactome
Connecting TCM to the modern biomedical literature is challeng-
ing, due to the absence of the concept of “disease” in TCM. As a
result, previous findings based on diseases, e.g., disease modules
(16, 22, 23), are not directly applicable to TCM. To bridge this
gap, we propose the use of symptom phenotypes to characterize
the indications and effects of TCM and study the PPI pattern of
symptoms. This approach is based on the fact that TCM clinical di-
agnosis and treatments are based on symptom phenotypes (24, 25),
and is further supported by the availability of disease taxonomy and
protein/gene association data in symptom phenotypes (26, 27).

We rely on a curated symptom-gene association dataset (28) (see
Materials and Methods and data S1) to identify genes associated
with each symptom, and then map these genes onto their corre-
sponding proteins in the PPI (see Materials and Methods and

Fig. 1. Study design. To explore the mechanisms of how TCM treats disease/symptoms, we develop a generic framework that characterizes TCM mechanisms as the
network-based relation between symptom-associated proteins and herb targets in the human PPI. After collecting the symptom-associated proteins and herb-target
data, we designed multiple network-based metrics to unveil the network patterns connecting them, including symptom localization, symptom-symptom relation, and
herb-symptom proximity. We validated these relations by showing that our network-based framework captures symptom-disease relations and herb-symptom effective-
ness, leveraging online public databases and a hospital inpatient dataset. We highlight the potential application of our work in predicting herb-symptom treatments.

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Gan et al., Sci. Adv. 9, eadh0215 (2023) 27 October 2023 2 of 15

D
ow

nloaded from
 https://w

w
w

.science.org on O
ctober 30, 2023



data S2). We focus on 174 symptoms with at least 20 associated pro-
teins. We find that for 108 of these 174 symptoms, their associated
proteins form a connected component significantly larger than
random expectation (z > 1.6; Fig. 2A and data S3). This suggests
that the symptom-associated proteins agglomerate into a localized
module in the PPI. In addition, we found that proteins associated
with different symptoms are distant from each other (Fig. 2B),

characterized by the average network separation metric (see Mate-
rials andMethods) Sab = 0.23, larger than the random expectation of
zero. This suggests that different symptoms perturb different
regions of the PPI.

We also ask if the network distance between symptom modules
on the interactome can reveal clinically relevant relations between
the symptoms. To do this, we calculated the average network

Fig. 2. Symptom pattern in the human PPI. (A) Schematic illustrating that proteins associated with a symptom form localized modules on the human protein inter-
actome, and the inter-module network distance is indicative of symptom similarity. (B) Distribution of largest-connected-component z score formed by symptom-as-
sociated proteins, for 174 symptoms. One hundred eight out of 174 symptoms form significantly clustered local modules (z > 1.6). The blue dotted lines indicate z = ±1.6,
and the red dotted line indicates z = 0. (C) Distribution of network separation (Sab) of all symptompairs. The average ⟨Sab⟩ is larger than zero, the random expectation. This
suggests that different symptoms perturb different/specific regions in the PPI, by forming modules distant from each other. (D) The average interactome network dis-
tance (Dab) of a symptom pair negatively correlates with the symptoms’ co-occurrence in diseases (co-disease count), with Pearson’s correlation −0.46. Each dot repre-
sents a symptom pair. We highlight in red examples of similar and co-occurring symptoms, such as fever-diarrhea (Dab = 1.25, co-disease count = 1278), fatigue-pain (Dab
= 1.25, co-disease count = 1163), and dizziness-headache (Dab = 1.32, co-disease count = 917). We also highlight in green an example symptom pair with high network
distance and less co-occurrence, eye pain and anorexia (Dab = 2.91, co-disease count: 13). (E) The interactome network distance of a symptom pair negatively correlates
with the biological similarity of the genes associated with the symptoms.
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distances between the PPI modules of two symptoms (Dab; see Ma-
terials and Methods). Then, we leverage 147,978 symptom-disease
associations (29) to compute the number of shared diseases of
symptoms. We found the number of shared diseases of two symp-
toms to negatively correlate with their PPI modules’ distance Dab
(Fig. 2D, Pearson’s correlation = −0.46, P = 3.1 × 10−55), indicating
that a closer network distance between symptom modules predicts
their co-occurrence in diseases. We also investigate if the network
distance between symptoms can predict their biological similarity.
To do so, we leverage the Gene Ontology (GO) semantic similarity
of genes (see Materials and Methods) (30), which characterizes the
similarity of two genes based on their similarity in GO annotations.
We found a symptom pair’s overall GO semantic similarity to neg-
atively correlate with their average network distance Dab (Fig. 2E,
Pearson’s correlation = −0.35, P < 1 ×10−100). Furthermore, we ob-
served significant negative correlations between network distance
and GO semantic similarity, for each of the three branches of GO
ontology, cellular component, biological process, and molecular
function (text S1 and fig. S2). Together, these findings indicate
that two symptom modules with closer distance in the PPI are
more likely to co-occur in the same disease, and to be more biolog-
ical similar. We provide symptom pairwise network distance Dab &
Sab along with co-disease count and GO semantic similarity in
data S3.

For example, the symptom pair fever and diarrhea has a network
distance Dab = 1.25, much shorter than the average symptom dis-
tance <Dab> = 2.01 ± 0.37 (z = −2.1, P = 0.018), and a co-disease
count of 1278, much higher than the average co-disease count
236 ± 264 (z = 3.9, P = 4.8 × 10−5). Diarrhea and fever co-occur
in many diseases such as inflammatory diseases (e.g., inflammatory
gastroenteropathy) (31) and virus-induced infectious diseases [e.g.,
severe acute respiratory syndrome coronavirus 2 (32)]. These co-oc-
currences may be also rooted in the two symptoms’ 27 shared genes,
including inflammatory biomarkers [e.g., PIK3R1 and TNF (33)]
and the cytokines [e.g., IL1A and IL7R (34)]. Their associated path-
ways tend to be related to the inflammatory immune processes, such
as the Janus kinase/signal transducers and activators of transcrip-
tion pathway (35) and cytokine-mediated signaling pathway (36).
Other frequently co-occurring symptom pairs (highlighted in red
in Fig. 2D) include fatigue-pain (Dab = 1.25, co-disease count =
1163) and dizziness-headache (Dab = 1.32, co-disease count =
917). In contrast, symptoms with higher network distance have
less co-occurrence in diseases and are not considered similar,
such as eye pain and anorexia (highlighted in green in Fig. 2D),
which has a large Dab = 2.91 and a low co-disease count of 13.

Herb-symptom network proximity indicates therapeutic
effectiveness
We investigate TCM herbs’ therapeutic effects by analyzing their
protein targets in the PPI. One challenge of this approach is the
complexity of assessing the effects of targets for each herb, as each
herb contains numerous chemicals, and each chemical can bind to
multiple protein targets (37, 38). To overcome this challenge, we
refined herb-chemical-target data and designed a multimodal
network-based approach to characterizing the PPI relationship
between herb targets and symptom modules. We rely on two
groups of datasets: (i) We directly use herb-target data from the re-
cently updated HIT 2.0 database (39), compiled by text-mining lit-
erature abstracts for compound-target relations, followed bymanual

review. After name mapping, this dataset yields 798 herbs and 2270
protein targets, with an average of 162.9 ± 185.5 targets per herb. (ii)
We compile herb-target data by integrating herb chemical compo-
sition data from the TCMIO database with chemical-target data
from STITCH. The TCMIO database (40) contains a recent and
comprehensive compilation of the TCMSP, TCMID, and TCM-
ID databases (41–43), which focus on chemicals with potential ther-
apeutic effects. We then use STITCH (44) for chemical-target data,
keeping only targets with experimental evidence. In the end, we ob-
tained 461 herbs with target data, consisting of 915 chemicals with
therapeutic potential, and together targeting 7518 unique proteins.
On average, each herb has 61.9 ± 61.5 (potentially therapeutic)
chemicals, and each chemical has 69.7 ± 311.4 targets (see data
S4; see also text S1 and fig. S3 for distribution plots).

To characterize the network-based relations between herbs and
symptoms, we develop a multimodal approach comprising eight
pipelines, each of which produces a network-based metric for
each herb-symptom pair (see schematics and workflow in Fig. 3,
A and B). Our pipelines are driven by the hypothesis that herbs ef-
fective for treating a symptom must target proteins proximal to the
symptom-associated proteins in the PPI, similar to the network
pattern observed in drug-disease relations (17). To quantify the
network-based relationship between a set of targets and a set of
symptom-associated proteins, we use two metrics: (i) the proximity
distance, which is the average distance between herb targets to their
closest symptom-associated protein(s), and (ii) the proximity z
score, which measures how the proximity distance differs from
random expectation (see Materials and Methods). For both
metrics, lower values indicate a closer network relation between
the target set and the symptom module. For the proximity z
score, z < 0 means more proximal than random, z > 0 means
more distant than random, and z = 0 means neutral. We also de-
signed four herb-target mapping methods from (a) HIT target
data and (b to d) integrated herb-chemical-target data (see Materi-
als and Methods). Together, the combination of the two distance/
proximity metrics (proximity d and z) and the four herb-target
mapping methods (a to d) resulted in eight pipelines for herb-
symptom network metrics (Fig. 3B), for each herb-symptom pair.
We compute the network metrics for all herb-symptom pairs
using the eight pipelines (see data S5).

To evaluate the performance of the proposed network metrics,
we leverage as ground truth a dataset of expert-curated herb-
symptom indications from SymMap (45), where the herb is recog-
nized by Chinese Pharmacopoeia (CHPH; the authoritative TCM
data, 2015 edition) to be effective against the symptom. We map
these herb-symptom indication pairs into our eight pipelines, re-
sulting in 1480 indications in pipelines 1 and 2, and 1325 indica-
tions in pipelines 3 to 8. To evaluate our network proximity
hypothesis, first, we make box-and-whiskers plots of the network
metrics for all eight pipelines (Fig. 3C), comparing indicated
herb-symptom pairs (orange bars) against non-indicated herb-
symptom pairs (blue bars).We found that the orange bars were con-
sistently lower than the blue bars across all pipelines, indicating that
known effective herb-symptom pairs are more proximal, compared
to other herb-symptom pairs. In addition, we calculate the AUC
(area under the receiver operating characteristic curve, or
AUROC) as an accuracy metric for all pipelines, using the herb-
symptom pairs with indications as positive cases, and the herb-
symptom pairs without indications as negative cases (Fig. 3D).
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The obtained AUC values between 0.65 and 0.72 indicate that all
pipelines are highly predictive compared to the random expectation
of AUC = 0.5. Both proximity distance and the proximity statistical
z score were found to be predictive, with neither consistently out-
performing the other. The best-performing pipeline is the HIT
target dataset with proximity z score, with the highest AUC =
0.72. To our knowledge, there is no other generic method that

predicts an herb’s effectiveness against a symptom/disease from
the PPI, so we compare this result with previous predictions on
drug-disease relations. The observed best AUC value of 0.72 in
this work is higher than the best AUC of 0.66 observed in generic
drug-disease effectiveness (17), and the best AUC of 0.63 in drug-
COVID effectiveness (20). Overall, the (relatively) high AUCs and
their consistency across all pipelines indicate that network

Fig. 3. Herb-symptom network proximity predicts effectiveness. (A) Schematics of the herb-symptom network proximity metric, based on shortest paths between
herb-chemical targets and symptom-associated proteins in the protein interactome. (B) Workflow of the multimodal approach for eight herb-symptom proximity pipe-
lines, with definitions of the metrics. (C) Results of the eight pipelines of network metrics for herb-symptom pairs categorized as indicated or non-indicated. Indicated
herb-symptom pairs (orange bars) show lower proximity metrics (shorter network distance) than the non-indicated herb-symptom pairs (blue bars), consistently over all
eight pipelines. (D) AUC (area under the receiver operating characteristic curve) performance evaluation of the eight herb-symptom proximity pipelines, using the known
herb-symptom indications as positive cases. (E) Example demonstrating herb-symptom proximity: Herbs Yinchaihu and Huangbai are proximal (having highly negative
network proximity z score) to the fever symptom and are used to treat fever in practice, whereas the Chuanwu herb is distant (having positive z score) to fever but proximal
to abdominal pain, thus it is not used to treat fever but to treat abdominal pain.

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Gan et al., Sci. Adv. 9, eadh0215 (2023) 27 October 2023 5 of 15

D
ow

nloaded from
 https://w

w
w

.science.org on O
ctober 30, 2023



proximity has predictive power regarding TCM herb-symptom ef-
fectiveness. This result is especially remarkable considering the high
noise in such large-scale and multi-faceted data, and the diversity of
symptom/disease-herb relationships.

To illustrate the role of herb-symptom proximity (Fig. 3E), we
consider the “fever” symptom and herbs effective in treating it.
We use HIT proximity z score (pipeline P2) here and in the rest
of the paper when demonstrating examples because it is the best-
performing pipeline according to the AUC score. Herbs with
highly negative network proximity z scores to the fever symptom-
associated protein module include Yinchaihu (Radix Stellariae,
Starwort root, z score: −4.32), which is recognized by the CHPH
to treat fever and is prescribed by TCM doctors in practice to
treat, e.g., asthenic fever in the late stage of febrile diseases (46).
This herb treats fever by regulating a series of inflammatory pro-
cesses, such as nuclear factor κB and mitogen-activated protein
kinase (47). Another well-recognized herb used by TCM doctors
to treat fever, Huangbai (Phellodendri Chinensis Cortex, Phelloden-
dron Bark, z score: −2.82), is used to treat pneumonia and tubercu-
losis (48). Berberine, one of the main active chemical components
ofHuangbai, has anti-inflammatory and antipyretic effects (49). On
the other hand, an herb distant from the fever symptom module in
the PPI, such as Chuanwu (Radix Aconitum, aconite root, z score:
1.77), is unlikely to be effective against fever, consistent with expert
knowledge. Chuanwu is network-proximal to abdominal pain (z
score: −1.25) and is recognized by the CHPH and prescribed in
practice for pain relief due to its anti-inflammatory, analgesic,
and antitumor effects (50).

Validation of herb-symptom relation with hospital
inpatient data
In this section, we validate the effectiveness of our network medi-
cine framework in predicting symptom relations and herb-
symptom proximity using real-world patient data. We collected
the electronic medical record (EMR) data of 1936 liver cirrhosis in-
patient cases treated at Hubei Provincial Hospital of Traditional
Chinese Medicine in Wuhan. Data on patient symptoms and
their changes (before and after treatment) were extracted from the
admission and discharge records using a clinical information ex-
traction tool (Human-machine Cooperative Phenotypic Spectrum
Annotation System, HCPSAS; www.tcmai.org) (51). We manually
mapped the symptoms in the patient data from Chinese to
Unified Medical Language System (UMLS) terms to enable
symptom-gene associations (see Materials and Methods). Similarly,
we map herbs from their Chinese names in the data to herb IDs to
obtain their chemical composition and target data. The resulting
patient dataset contains a total of 114 symptoms, 218 herbs, and
23,413 herb-symptom pairs (data S6).

To validate the relation between a symptom pair’s network dis-
tance and their co-occurrence, we computed the relative risk (RR)
between each symptom pair. RR is a standard statistic that measures
the strength of an association (in this case, the co-occurrence of two
symptoms), defined as the ratio of the probabilities of the exposed
and unexposed groups. Then, we computed the PPI network dis-
tance Dab between each pair of symptoms (see data S7 and found
a negative Pearson’s correlation of −0.31 (P = 1.4 × 10−15)
between symptom pairs’ RR and Dab (Fig. 4A). This negative corre-
lation indicates that symptoms with shorter network distance in the
PPI are more likely to co-occur. Examples of co-occurring symptom

pairs include nausea and vomiting (Dab = 0.53, RR = 11.00) as well
as consciousness disorder and lethargy (Dab = 0.62, RR = 10.6).
Conversely, symptom pairs with longer network distance do not
have high RR, for example, joint disorder and poor appetite (Dab
= 1.75, RR = 0.98) as well as abdomen distention and ulcer
mouth (Dab: 2.00, RR:0.87). These results validate our hypothesis
that shorter network distances in the PPI can indicate co-occur-
rence of symptoms. We do not observe high negative correlations
on the high network distance (right-hand) side in Fig. 4A, suggest-
ing that while symptoms with short PPI distance tend to co-occur
more frequently, symptoms with long PPI distance co-occur
randomly.

Next, we used three different methods to validate the hypothesis
that the network proximity of an herb-symptom pair can predict the
herb’s effectiveness in treating the symptom. First, we show that
network proximity captures doctors’ knowledge in prescribing
herbs against symptoms (see data S8), by comparing the network
proximity of herb-symptom pairs in the patient dataset (represent-
ing herbs prescribed by doctors) against that of herb-symptom pairs
absent from the clinical dataset (representing herbs not prescribed
by doctors). We observe in Fig. 4B that, for all eight proximity pipe-
lines, the herb-symptom pairs in the patient dataset (orange boxes)
have significantly lower network proximity metrics than the herb-
symptom pairs not observed in the patient dataset (blue boxes),
with P values ranging from 3.6 × 10−07 to 9.0 × 10−39. In other
words, TCM doctors tend to prescribe herbs whose therapeutic
targets are proximal to the disease/symptom module in the PPI.
This supports our hypothesis that proximal herbs are more likely
to be effective and aligns with doctors’ expert knowledge (data S8).

Second, we explore if network proximity predicts effective herb-
symptom pairs in the patient dataset. As the patient data do not
contain any metric of herb effectiveness, we need to define one.
The ideal metric would be the statistical significance of effectiveness
for each herb-symptom pair, but that would require more data than
currently available. We therefore define a binary (i.e., true or false)
herb effectiveness measure by comparing patients’ symptom recov-
ery rate after treatment versus the symptom’s baseline recovery rate
(see Materials and Methods). In short, an herb is considered effec-
tive if the patient receiving it recovers better than not receiving it.
Using this definition, we identified 986 effective herb-symptom
pairs with a frequency of at least 10 (i.e., at least 10 patients with
the symptom and treated with the herb). We observe in Fig. 4C
that for all eight pipelines, the effective herb-symptom pairs
(green bars) consistently have significantly lower network proxim-
itymetrics than other herb-symptom pairs (gray bars), with P values
ranging from 8.0 × 10−57 to 1.5 × 10−2 (see Materials and Methods
and data S8). Therefore, these 986 effective herb-symptom pairs
support our hypothesis that effective herb-symptom pairs tend to
be network-proximal.

Third, we focus on a subset of the herb-symptom pairs with suf-
ficient frequency to perform bioinformatics analysis with statistical
significance. We apply a propensity score matching (PSM) method
to a data subset of 888 herb-symptom pairs with at least 30 cases
where the patient with this symptom is treated with the herb.
PSM means that for each herb-symptom pair, we matched the pa-
tients with this symptom and treated with this herb (i.e., the case
group) to a control group where the patients have the same
symptom but are not treated with this herb, and we adjusted for po-
tential confounders (e.g., age, gender, history of hypertension,
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Fig. 4. Validation of network medicine framework with hospital inpatient data. (A) Patient symptom data show a negative Pearson’s correlation between symptom
pair relative risk (in log scale) and network distance Dab, validating that shorter network distance between symptoms is predictive of their co-occurrence. (B) Herbs used
by doctors in patient data (orange boxes) are significantly more proximal to symptoms than herbs not used in patient data (blue boxes), consistently observed over all
eight pipelines, indicating that network proximity captures doctors’ knowledge. (C) The 986 effective herb-symptom pairs identified from the binary effectiveness metric
(green boxes) have lower networkmetrics than other herb-symptom pairs (gray boxes) in all eight pipelines, i.e., network proximity metrics can predict the effective herb-
symptom pairs. (D) The 86 effective herb-symptom pairs identified from propensity score matching (green boxes) have lower network metrics than other herb-symptom
pairs (gray boxes) in seven of all eight pipelines, i.e., network proximity metrics can predict the significantly effective herb-symptom pairs.
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diabetes, coronary artery disease, and chronic kidney disease) of the
patients in the control group (see Materials and Methods). After
PSM, we identified 86 herb-symptom pairs where the case group
has a significantly higher symptom recovery rate than the control
group (P < 0.05, chi-square test), i.e., the herb treatment is effective
by statistical significance. We found that these 86 effective herb-
symptom pairs are network-proximal, compared to all herb-
symptom pairs (data S9). As shown in Fig. 4D, seven of the eight
pipelines indicated that the effective pairs have significantly lower
network metrics (P value ranging from 3.0 × 10−4 to 2.5 × 10−2),
confirming that network proximity is a good predictor of herb ef-
fectiveness in patient data. Herb-symptom pairs with proximity
metrics from all eight pipelines, together with an indicator of
whether it is in patient data, an indicator for presence in the clinical
dataset, an indicator for effectiveness identified by the binary
metric, and an indicator for effectiveness identified from PSM,
are provided in data S8.

As an example, we consider the herb-symptom pair Baizhu
(Atractylodis Macrocephalae Rhizoma, Rhizome of Largehead
Atractylodes) used for poor appetite. Network proximity shows a
negative z score = −2.45 between Baizhu’s protein targets and the
poor appetite symptom module, meaning the herb’s target is prox-
imal to the symptom’s associated proteins, suggesting Baizhu’s po-
tential effectiveness in improving poor appetite. To evaluate from
patient data the effectiveness of the herb, we match patients with
poor appetite who are treated with Baizhu (case group), to patients
with poor appetite but not treated with Baizhu (control group), and
compare their symptom recovery rate. We observe that in the
matched patients, Baizhu significantly improved the recovery rate
of poor appetite (79.53% case group recovery rate versus 72.51%
control group recovery rate, P = 0.0316), consistent with the
network proximity prediction. This aligns with the known use of
Baizhu to treat gastrointestinal dysfunction according to the
CHPH. Studies showed that atractylenolide I, sourced from
Baizhu, regulates gastrointestinal function and promotes the ab-
sorption of nutrients (52), supporting the effectiveness of Baizhu
in improving a patient’s appetite.

Herb-symptom proximity is robust under chemical filtering
A challenge to a deeper explanation of the therapeutic role of spe-
cific herbs is the limited specificity of the herb-chemical-target
dataset. A small set of common chemicals tends to appear in
many foods (text S1 and fig. S3D). Given their prevalence in food,
these chemicals are less likely to be responsible for the specific ther-
apeutic effect of herbs. To ensure that these common chemicals do
not undermine the herb-symptom proximity, we filter out common
chemicals with high frequency in food as identified based on the
FooDB database (www.foodb.ca) (text S1) (53). We find that 704
chemicals out of the total 915 chemicals survived this filter. We
then compute herb-symptom network proximity using these 704
chemicals and repeat our accuracy analysis using indication data
and inpatient data with effectiveness metrics. We find that the
results are consistent with the network proximity hypothesis but
did not improve its predictive power: The AUCs from the indication
data are above 0.5 but have declined (see text S1 and fig. S4A); on the
other hand, all eight pipelines show consistently better network
proximity (i.e., lower metrics) for the significantly effective herbs
identified by PSM (fig. S4D). Other metrics did not change as
much. Since the results after the chemical filtering still show that

effective herb-symptom pairs tend to be network-proximal, we con-
clude that chemical filtering does not affect the herb-symptom
proximity hypothesis.

Our network medicine framework reveals herb discovery
and repurposing opportunities
We demonstrate the utility of our network medicine framework for
predicting herb candidates to treat symptoms. By calculating the
network proximity metrics between herb-symptom pairs, we iden-
tified several promising candidates for further investigation. For
example, we found a negative proximity z score = −2.86 between
the herb-symptom pair Chaihu (Bupleuri Radix, Root of Chinese
Thorowax)-abdomen distention, predicting the herb as potentially
effective against the symptom. Although the CHPH does not explic-
itly record this herb for the treatment of abdomen distension, it
does record that Chaihu is used to treat distension in the chest
and ribs, similar to distension in the abdomen. In support of this
prediction, our patient dataset showed that (i) Chaihu is frequently
prescribed in practice to treat abdomen distention, with herb-
symptom co-occurrence frequency at 381, significantly higher
than the average frequency of 106.8 ± 106.5 for all herb-symptom
pairs and (ii) in the PSMmatched patients, Chaihu significantly im-
proved the recovery rate from abdomen distention (88.71% versus
83.73%, P = 0.0458). Chaihu contains chemicals such as saikosapo-
nins, which can relieve abdomen distension caused by dyspepsia
and ascites of liver cirrhosis (54), suggesting its potential effective-
ness against abdomen distention. Furthermore, we identified effec-
tive herb-symptom pairs less frequent in clinical practice, such as
the “Cangzhu (Atractylodis Rhizoma, Rhizome of Swordlike Atrac-
tylodes)-abdominal pain” pair, which has a negative proximity z
score = −3.08 and has a significantly improved recovery rate
(93.55% versus 70.97%, P = 0.0461). Studies have shown that the
volatile oil component of Cangzhu has an anti-acetylcholine
effect, which can relieve abdominal pain symptoms caused by intes-
tinal spasms (55). We also found potentially effective herb-
symptom pairs that are rarely reported, such as the “Baiji (Bletillae
Rhizoma, Bletilla Striata Rchb.F.)-edema” pair, which has a highly
negative proximity z score of −4.12 with improved recovery rate
(83.33% versus 67.86%, P = 0.0195). This suggests that Baiji, an as-
tringent hemostatic conventionally used to relieve gastrointestinal
bleeding (56), might be effective in relieving edema. These findings
of potentially effective herb-symptom treatments highlight the pre-
dictive power of the network medicine framework in identifying
herb discovery or repurposing candidates. We provide a list of 50
herb-symptom pairs that are both network-proximal and effective
after PSM in patient data but are not yet recorded in the CHPH
(Table 1). They are promising treatment candidates that may be
tested in follow-up studies. The comprehensive herb-symptom
pair network proximity result, which may provide more candidate
effective herbs against a symptom, can be found in data S5.

DISCUSSION
In this work, we established a network medicine framework to
reveal the scientific principle of TCM herbal treatment, by
mapping symptom-associated proteins and herb targets onto the
human PPI and analyzing their topological relations. We found
that proteins associated with a symptom cluster into localized
modules and observed that a short network distance between two
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Table 1. Fifty herb-symptom pairs with negative network proximity z score (i.e., predicted as potentially effective) and significantly effective in
propensity score matched patient data. They are promising candidates for herb-symptom treatment discovery/repurposing but are not yet recorded in the
Chinese Pharmacopoeia. The table is ordered from the most negative proximity z score to the least negative. The third column is the network proximity z score;
the fourth column is the number of patients in the case/control group after propensity score matching; the fifth and sixth are the recovery rates of the case group
and the control group; the last column is the P value for the recovery rate difference, from a chi-square test. A similar table with more herb name mapping is
provided in data S9.

Herb Latin name Symptom Proximity
z score

Number of
patients

Case group
recovery rate

Control group
recovery rate

P value

Bei
Sha Shen

Glehnia littoralis Edema −6.31 79 77.22% 58.23% 1.07
× 10−02

Jin Yin Hua Flos lonicerae Edema −5.58 78 73.08% 53.85% 1.26
× 10−02

Hu
Ji Sheng

Viscum coloratum Edema −5.31 46 91.30% 69.57% 1.80
× 10−02

Xiang Fu Cyperus rotundus Edema −4.32 63 73.02% 53.97% 2.64
× 10−02

Chi Shao Paeonia obovata Edema −4.3 98 80.61% 68.37% 4.93
× 10−02

Bai Ji Bletillae rhizoma Edema −4.12 84 83.33% 67.86% 1.95
× 10−02

Ku Shen Sophora flavescens Abdomen
distention

−3.37 40 92.50% 72.50% 3.94
× 10−02

Chen Pi Citrus aurantium Body pain −3.16 87 93.10% 81.61% 2.25
× 10−02

Cang Zhu Atractylodes lancea Abdominal pain −3.08 31 93.55% 70.97% 4.61
× 10−02

Xiang Fu Cyperus rotundus Fatigue −2.96 201 87.56% 80.10% 4.21
× 10−02

Mu Xiang Radix aucklandiae Fatigue −2.9 149 92.62% 85.23% 4.23
× 10−02

Chai Hu Bupleurum chinense Abdomen
distention

−2.86 381 88.71% 83.73% 4.58
× 10−02

Sha Ren Amomum villosum Poor appetite −2.77 112 81.25% 67.86% 2.14
× 10−02

Zhe Bei Fritillariae
thunbergii Bulbus

Abdomen
distention

−2.76 64 95.31% 81.25% 2.79
× 10−02

Chen Pi Citrus aurantium Fatigue −2.67 579 87.39% 83.25% 4.63
× 10−02

Shan Zha Crataegus cuneata Abdominal pain −2.67 53 81.13% 62.26% 3.11
× 10−02

Zhi Zi Fructus gardeniae Poor appetite −2.48 73 84.93% 71.23% 4.54
× 10−02

Fang Ji Aristolochia fangchi Abdomen
distention

−2.36 85 95.29% 84.71% 4.08
× 10−02

Yi Zhi Ren Alpinia oxyphylla Fatigue −2.34 38 92.11% 68.42% 2.11
× 10−02

Shan Yao Dioscorea batatas Edema −2.29 150 80.67% 70.00% 3.21
× 10−02

Fang Feng Saposhnikovia divaricata Abdomen
distention

−2.27 67 91.04% 76.12% 1.97
× 10−02

Zhe Bei Fritillariae
thunbergii Bulbus

Poor appetite −2.21 67 86.57% 71.64% 3.36
× 10−02

Fang Feng Saposhnikovia divaricata Abdominal pain −2.16 30 83.33% 60.00% 4.49
× 10−02

Chai Hu Bupleurum chinense Fatigue −2.15 593 88.20% 82.63% 6.63
× 10−03

continued on next page
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Herb Latin name Symptom Proximity
z score

Number of
patients

Case group
recovery rate

Control group
recovery rate

P value

Lian Qiao Forsythia suspensa Cough −1.94 56 89.29% 75.00% 4.84
× 10−02

Xuan Shen Scrophularia ningpoensis Poor appetite −1.8 64 82.81% 67.19% 4.12
× 10−02

Zhi Shi Citrus aurantium Fatigue −1.77 399 88.47% 79.95% 9.64E-04

Hong Hua Carthamus tinctorius Poor appetite −1.73 37 89.19% 67.57% 4.81
× 10−02

Tai Zi Shen Radix pseudostellariae Insomnia −1.72 234 87.18% 77.35% 5.38
× 10−03

Ban
Bian Lian

Lobelia chinensis Fatigue −1.68 86 86.05% 72.09% 2.45
× 10−02

Yu Jin Curcuma aromatica Abdomen
distention

−1.59 351 90.31% 84.90% 2.95
× 10−02

Fang Feng Saposhnikovia divaricata Insomnia −1.56 55 90.91% 72.73% 1.34
× 10−02

Hui Xiang Foeniculi fructus Fatigue −1.49 31 93.55% 70.97% 4.61
× 10−02

Hu
Ji Sheng

Viscum coloratum Poor appetite −1.36 45 86.67% 64.44% 1.42
× 10−02

Chuan
Xiong

Chuanxiong rhizoma Poor appetite −1.35 146 80.82% 68.49% 1.54
× 10−02

Zhi Mu Anemarrhena
asphodeloides

Poor appetite −1.32 102 82.35% 70.59% 4.76
× 10−02

Hu
Ji Sheng

Viscum coloratum Insomnia −0.84 34 94.12% 67.65% 1.36
× 10−02

Hou Po Magnoliae
officinalis Cortex

Fatigue −0.71 369 86.45% 80.22% 2.31
× 10−02

Zhi Mu Anemarrhena
asphodeloides

Insomnia −0.69 85 91.76% 77.65% 1.06
× 10−02

Xuan
Fu Hua

Flos inulae Fatigue −0.68 93 89.25% 77.42% 3.04
× 10−02

Xu
Zhang
Qing

Cynanchi Paniculati Radix
Et Rhizoma

Fatigue −0.54 35 94.29% 71.43% 2.64
× 10−02

Suan
Zao Ren

Ziziphus Jujuba
var. spinosa

Poor appetite −0.44 187 84.49% 75.94% 3.78
× 10−02

Huang Lian Coptis chinensis Fatigue −0.41 288 88.54% 80.90% 1.08
× 10−02

Sheng Ma Cimicifuga foetida Fatigue −0.4 65 92.31% 73.85% 5.00
× 10−03

Niu Xi Achyranthes aspera Insomnia −0.36 83 84.34% 71.08% 4.02
× 10−02

Bai Xian Pi Dictamni cortex Poor appetite −0.33 32 81.25% 56.25% 3.10
× 10−02

Zhi Shi Citrus aurantium Yellow skin −0.21 124 54.84% 35.48% 2.20
× 10−03

Zhe Bei Fritillariae
thunbergii Bulbus

Insomnia −0.12 49 93.88% 77.55% 4.33
× 10−02

Di Ding Corydalis bungeana Fatigue −0.02 78 91.03% 76.92% 1.64
× 10−02

Jing Jie Schizonepeta tenuifolia Insomnia −0.01 38 89.47% 60.53% 8.07
× 10−03
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symptom modules is predictive of the symptoms’ co-occurrence
and their GO semantic similarity. We showed that the network
proximity between an herb’s targets and a symptom module is pre-
dictive of the herb’s effectiveness in treating that symptom, validat-
ed with indication data curated from the CHPH. We then
comprehensively validated our framework with patient data,
showing that higher RR of symptoms in patients correlates with
shorter interactome distance, and herb-symptom proximity pre-
dicts herb-symptom treatment effectiveness. Last, we identified
herb-symptom pairs that are predicted to be effective based on
network proximity and proven effective in the patient data but
not yet recognized by the TCM community, highlighting the trans-
lational value of our framework in prioritizing effective herb treat-
ment against diseases, which can further lead to drug discovery and
repurposing opportunities.

To our knowledge, our framework is the first scientific theory
that uncovers the generic mechanistic principle of a traditional
medicine system, demonstrating the translation of traditional/em-
pirical practice into modern biomedical knowledge. We are also
the first to have studied and validated TCM herb effectiveness on
a systematic level, given that previous research is limited to single
herbs or single prescriptions. Our network medicine framework
opens up a paradigm to study the effectiveness and the molecular
basis of natural medicine. In contrast to existing network pharma-
cology approaches which often assume that herb/drug targets must
directly target diseases/symptoms, our whole-interactome approach
is more general, as we have observed that herbs/drugs can be effec-
tive even if they act on the appropriate network neighborhood (17,
20). We designed multiple pipelines to extract the network-based
relation between herbs, chemical targets, and symptoms, overcom-
ing the complexity challenge of herb-chemical-target data. Our ap-
proach combining computational network science and patient data
offers a powerful cross-disciplinary way to prioritize chemicals/
herbs with therapeutic potentials and discover herb treatment pre-
dictions against specific diseases.

Our work opens up multiple follow-up directions for future
work. For example, prioritizing effective herb-symptom pairs can
lead to phenotype-based herb/chemical screening, identifying po-
tential treatments against specific disease phenotypes. Furthermore,
our framework might be further investigated to reveal interactome
patterns that prioritize therapeutic chemicals from an effective
herb’s chemical composition. Next, given that the herb-chemical-
target data and symptom-gene association data are still incomplete
(e.g., we lack the chemical dose dependence in herb-chemical
mapping), improving and refining these data can enhance our
framework’s ability to capture herb-disease treatment relations.
We also used a dataset focusing on patients with liver cirrhosis,
with a subset of the data available for statistical significance in bio-
informatic analysis. Extending the size of the patient data could
offer better support for our framework. Another future direction
is to explore alternative methods/metrics to tackle the diversity/
complexity challenge in the herb-chemical-target relations, better
capturing herb-symptom relations. Here, we used distance-based
metrics to define the network relations; developingmore complicat-
ed methods may increase the predictive power; or consensus algo-
rithms may help balance the results of multiple prediction pipelines
(20). For example, we also tested network embedding-based
methods, finding that they can also capture herb-symptom proxim-
ity (text S1 and fig. S5). Last, the PPI pattern of TCM prescriptions,

or herb combinations, is another under-explored direction. Recent
works showed that co-prescribed herbs tend to be close in the
protein interactome (57, 58). According to the classic TCM
concept, each herb in a prescription has a specific effect, which is
often complementary to the effects of other co-prescribed herbs.
Our established framework to study herb-symptom relations may
improve the understanding of how a combination of herbs works
against a given symptom or symptom set.

MATERIALS AND METHODS
Symptom-gene association data
We used symptom data from SymMap, which integrates disease-
gene association from DisGeNet (59) and MalaCards (60). The
data contain 110,407 associations with 11,362 unique diseases rep-
resented by UMLS concept codes and 13,271 unique genes. To
obtain high-quality symptom-gene associations, we used the
concept of “dual phenotypes” (DP) (61), such as obesity, fever,
and insomnia, which are regarded as both diseases and symptoms.
Thus, the symptom-gene associations are straightforwardly the cor-
responding disease-gene associations, for diseases with DP proper-
ties. To identify these kinds of phenotype terms (e.g., symptom)
from databases, we filtered an integrated DP-genotype association
dataset by limiting the semantic types of UMLS concepts as symp-
toms from the disease-gene associations (62). We obtained 16,049
associations between 490 symptoms with concept unified identifiers
code and 4193 genes. To ensure the reliability of the symptom-as-
sociated gene data, we focus on the 174 symptoms with at least 20
associated genes and discarded the symptoms with fewer gene asso-
ciations due to potential incompleteness. The compiled symptom-
gene association dataset is provided in data S1.

Human protein interactome
We use the human PPI from our previous work on predicting
COVID-treating drugs (20). The PPI is assembled using experimen-
tally validated protein interactions including: (i) binary interactions,
derived from high-throughput yeast two-hybrid experiments, three-
dimensional protein structures; (ii) interactions identified by affin-
ity purification followed by mass spectrometry; (iii) kinase substrate
interactions; (iv) signaling interactions; and (v) regulatory interac-
tions. The final PPI used in our study contains 18,505 proteins and
327,924 interactions between them (data S2).

Herb, chemical, and target data
We used herb data from (i) the recently updated HIT 2.0 database
(39), and (ii) the TCMIO database (40), a comprehensive collection
of TCMSP, TCMID, and TCM-ID databases (41–43). The HIT da-
tabase has straightforward herb-target data, so we directly map the
herbs and targets to our herb name data and protein interactome.
For the other TCM databases, we consider an herb as an assembly of
chemicals and use their chemical composition data. The TCM da-
tabases focus on chemicals with potential therapeutic effects, iden-
tified from experiments (e.g., mass spectrometry) with quality
control (63, 64). Then, we obtain the protein targets of each chem-
ical from the STITCH database (44), keeping only targets with ex-
perimental evidence. The compiled herb-chemical-target
association datasets are provided in data S4. In addition to herb-
chemical-target data, we also used an herb-symptom indication
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dataset from SymMap (45), an expert-curated list of herb-symptom
pairs recognized by doctors as effective treatments.

Patient data: Symptom-herb associations
We have collected the EMR data of liver cirrhosis inpatient cases
from Hubei Provincial Hospital of Traditional Chinese Medicine
in Wuhan, which included the full clinical profiles of patients.
TCM clinical named entities, such as symptoms and their trajectory
(e.g., symptom recovery) were extracted from the admission and
discharge records using text-mining methods based on a clinical in-
formation extraction tool (HCPSAS, www.tcmai.org). The resulting
dataset contains 1936 inpatients with herb prescription records,
which usually consisted of 16 to 18 herbs used in combination for
treatment. We considered that if a prescription is given to a patient,
then all herbs included in this prescription are associated with all
symptoms the patient has. For example, if a patient has five symp-
toms and is given 16 herbs, then wewill include all 5 × 16 = 80 herb-
symptom pairs. Yet, not every herb-symptom pair is expected to be
effective. Last, we obtained 5106 symptom-herb associations which
involve 55 symptoms and 218 herbs (see data S10 for herb ID and
name mapping). All admission data of these patients were verified
and standardized by trained medical researchers to ensure accurate
terminological mappings.

Patient data: Symptom terminology mapping and
processing
To connect clinical patient data to symptom gene data, we manually
mapped the Chinese terms of symptoms and herbs in patient data to
the English terms in symptom-gene associations. This was done by
trained medical researchers to ensure accurate terminological map-
pings. A total of 315 English symptom terms with associated genes
are mapped to 92 Chinese symptom terms in patient data. Note that
multiple UMLS codes could correspond to one TCM symptom. For
example, C0277799 and C0015967 were both mapped to 发热
(fever). Symptom-gene association data for patients’ symptoms
are provided in data S6.

Metrics
LCC and LCC z score
We characterize the localization of a node set in the network with
the z score of the node set’s largest connected component (LCC)
(16). We first compute the size of the LCC formed by the node
set, and then compare the observed LCC size against the random
expectation generated from simulations preserving the degree of
the nodes (17). The LCC z score is the difference between the ob-
served LCC size and the mean of randomization μ(random Lcc),
divided by the SD of the randomization σ(random Lcc):

zLCC ¼
Observed Lcc size � μðrandom LccÞ

σðrandom LccÞ

An LCC z score larger than 1.6 indicates the observed LCC is
significantly larger than random expectation. An implementation
of the code for LCC size and its z-score computation can be
found in (16).

Network distance Dab and network separation Sab
Wemeasure the network relation between two node sets (e.g., target
modules of herbs A and B) using the network distance Dab and

network separation Sab metrics. The network distance Dab, also
denoted as ⟨dAB⟩, is the average of network distances between all
node pairs in two node sets. The network separation metric Sab
was designed to characterize disease-disease relation and drug-
drug relation (16, 18):

sAB ¼ hdABi �
hdAAi þ hdBBi

2
The network separation metric compares the mean shortest dis-

tance within the interactome between the nodes of each node set,
⟨dAA⟩ and ⟨dBB⟩, to the mean shortest distance ⟨dAB⟩ between
node sets A and B. In ⟨dAB⟩, targets associated with both herbs A
and B have a zero distance by definition. The random expectation of
sAB is zero. A negative sABmeans the two node sets are located in the
same network neighborhood, while a positive sAB means the two
node sets are topologically separated.

An implementation of network separation computation in
Python can be found in (16).

Symptom semantic similarity
To evaluate the biological similarity between a pair of symptoms, we
use semantic similarity (30) to characterize the biological similarity
of genes associated with the symptoms. We used the Python
package pygosemsim (https://github.com/mojaie/pygosemsim) to
compute the GO semantic similarity between a pair of genes. The
package allows automatic collection of GO .obo file from http://
geneontology.org and annotations from http://geneontology.org/
gene-associations/goa_human.gaf.gz. It then computes Lin similar-
ity (65) as semantic similarity, combining all three branches of GO
ontology (cellular component, biological process, and molecular
function). In addition, we also compute the semantic similarity
for each of the three GO ontology branches and show a similar cor-
relation trend (text S1 and fig. S2). For the semantic similarity of two
symptommodules, we compute the average GO semantic similarity
of all pairs of genes between the two symptoms.

Network proximity distance and z score
Given that T, the set of herb targets, and s, the set of symptom-as-
sociated proteins, denote dist(t0, s0) as the shortest path length
between nodes t0 ∈ T and s0 ∈ s in the network, we define the
network proximity distance metric (referred to as “proximity dis-
tance d” in the main text) as the average distance over targets to
their closest symptom-associated protein (17):

dðT; sÞ ¼
1
Tk k

X

t0[T min
s0[s

distðt0; s0Þ

Then, we convert this absolute distance d to a relative proximity z
score, by simulating the random expectation of distances between
two randomly selected groups of proteins, matching the size and
degrees of the original S and T sets. To avoid repeatedly selecting
the same high-degree nodes, we use degree-binning (17). Denote
the mean of the reference random expectation of distances as
μrand(T, s) and the SD as σrand(T, s), we define the network proximity
z score as

zðT; sÞ ¼
dðT; sÞ � μrandðT; sÞ

σrandðT; sÞ
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The proximity z score measures how the proximity distance
differs from random expectation, with z = 0 being neutral, z < 0
being more proximal than random, and z > 0 being more distant
from random. For both proximity distance d and proximity z
score, the lower the metric value, the closer the two node sets are
on the network. Note the proximity z score is a stochastic
measure because of the randomized simulation. In other words,
identical repeated computations do not yield identical z scores.
An implementation of network proximity metrics computation
can be found in either (17) or (20).

Herb-target mapping methods to obtain herb-symptom
distance for each herb-symptom pair
We used four herb-target mapping methods to obtain herb-
symptom distance from (a) HIT direct target data and (b to d)
herb-chemical-target data:

(a) HIT data directly associate targets to each herb, so we
compute the two proximity measures straightforwardly as an
herb-symptom metric.

In contrast, the TCM herb-chemical-target dataset does not have
direct herb-target associations, so no direct herb-symptom relation
metric can be applied. Therefore, we design three herb-target
mapping methods (b to d) to obtain herb-symptom
network metrics:

(b) Target union: We define an herb’s target set as the union of
the targets of all composing chemicals of the herb, and then we in-
terpret herb target-symptom proximity measures as herb-symptom
relation metrics.

In (c) and (d), we define a second-order herb-symptom distance
from first-order chemical-symptom distances: first, for every chem-
ical-symptom pair, we compute chemical-symptom proximity
metrics using the chemical’s targets; then, we define the second-
order herb-symptom distance as follows:

(c) The average of all chemical-symptom distances from the
herb’s composing chemicals, i.e., assuming the effect of an herb is
the average effect of its composing chemicals.

(d) The smallest of all chemical-symptom distances from the
herb’s composing chemicals, i.e., assuming the effect of an herb is
dominated by the chemical most proximal to a symptom.

We give the mathematical formulae of the metrics below.
Notations: dhs, herb-symptom distance; h, herb; s, symptom-as-

sociated proteins; ci, the ith composing chemical of an herb; T,
targets of an herb or chemical, proximity(T, s),proximity measures
calculated from (T, s), i.e., proximity d(T, s) or z(T, s).

In the cases where herb targets are directly associated, i.e., (a) the
HIT database or (b) target union, the herb-symptom distance
metric is, straightforwardly, the proximity metric(s) between herb
targets and symptom proteins as dhs = proximity(Th, s). In (a),
HIT data Th is given directly; in (b), the targets of an herb are
defined as the union of targets from all the herb’s composing chem-
icals: Th = ⋃ci∈h(Tci).

When herb targets are not directly available in (c) and (d), we
define second-order herb-symptom distance metrics from first-
order chemical-symptom distances. The first-order chemical-
symptom distance is the proximity distance or z score for a chemical
ci and a symptom s, using targets of this chemical, denoted as dcis =
proximity(TCi

, s). Then, based on this first-order distance, we define
the second-order herb-symptom distance (b) as the (c) average or
(d) minimum of all first-order distances:

(c) Average: davghs ¼

P
ci

dcis

Nc
, with Nc being the total number of

chemicals in this herb.
(d) Minimum:dmin

hs ¼ min
ci[h

dcis.

Together, these four herb-target mapping methods crossing the
two proximity measures yield eight herb-symptom proximity
pipelines.

Patient data: Binary effective metric for TCM effectiveness
in hospital patient dataset
To evaluate the effectiveness of TCM in the patient dataset, we
define a binary (i.e., true or false) herb effectiveness measure by
comparing patients’ symptom recovery rate after herb treatment
versus the symptom’s baseline recovery rate. Specifically, we
define for each symptom a baseline “recovery percentage,”
meaning the percentage of patients recovered from the symptom
by the time they leave the hospital. Then, we define for each
herb-symptom pair a “recovery percentage after treatment”,
meaning the percentage of patients with a given symptom and
treated with a specific herb that has recovered from the symptom.
An herb-symptom pair is considered “effective,” if patients’ recovery
percentage after treatment is higher than the symptom’s (baseline)
recovery percentage without TCM treatment; otherwise, the herb-
symptom pair is considered ineffective.

Using the above definition, we obtain 986 effective herb-
symptom pairs with a frequency of at least 10 (i.e., at least 10 patients
with the symptom and treated with the herb), and with all eight
pipeline proximity scores available. As the herb-symptom pairs
used in the patient dataset are already more proximal than
random (Fig. 4B), the patient dataset overrepresents positive/effec-
tive herbs. For this reason, we cannot compare the effective pairs
against other pairs within the patient dataset, as they are both pos-
itive samples. Instead, in Fig. 4C, we compare the effective pairs
against all herb-symptom pairs. The same comparison is used in
the PSM-matched herb-symptom pairs in Fig. 4D.

Patient data: Propensity score matching
We used PSM in the patient dataset to remove the biases of patient
basic information on herb treatment outcomes. PSM is a statistical
matching technique that attempts to estimate the effect of a treat-
ment, policy, or other intervention by accounting for the covariates
that predict receiving the treatment (66). For a designated herb-
symptom pair, we matched the patients with the herb-symptom
pair against other herbs treating the same symptom, to evaluate
the effectiveness of the herb-symptom pair. For example, for the
Baizhu-fatigue pair, the fatigue patients who received Baizhu
therapy at any point during hospitalization were defined as the
case group for the Baizhu-fatigue pair. Fatigue patients who did
not receive Baizhu treatment from the control group. We adjusted
for baseline characteristics (e.g., age and sex) and high-incidence
comorbidity characteristics of patients in the two groups. The
most common comorbidities selected to control include esophageal
and gastric varices, abdominal effusion, hypoproteinemia, hyper-
tension, and diabetes. In the PSM analysis, the nearest-neighbor
method was applied to create a 1:1 matched control sample.
Mann-Whitney U test (two-tailed) and chi-square test (one-
tailed) were used to compare the differences of variables between
the two groups to ensure that there was no statistical difference in
these variables between the groups after matching.
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Of the total 888 herb-symptom pairs, approximately 50% (436
pairs) exhibited higher clinical effectiveness compared to the
control groups. Among these pairs, we identified 86 herb-
symptom pairs where the case group had a significantly higher
symptom recovery rate than the control group (P < 0.05, chi-
square test). The other 350 herb-symptom pairs are effective but
did not show a statistically significant difference (P > 0.05). This
is likely attributed to the limited sample sizes, as ~65% of the
herb-symptom pairs consist of sample sizes below 100 patients.

Statistics
We used standard statistics including mean ± SD, standard score
z ¼ x� mean

std , Mann-Whitney U test (one-tailed) for proximity pipe-
line comparisons, chi-squared test (one-tailed), andMann-Whitney
U test (two-tailed) for PSM result.
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Legends for data S1 to S15
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