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Genomics and phenomics of body mass
index reveals a complex disease network
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J. Michael Gaziano18,19, Daniel J. Rader 22,25, Philip S. Tsao 7,8, Kelly Cho18,19,
Kyong-Mi Chang 11,22, Peter W. F. Wilson3,4,42, VA Million Veteran Program*,
Yan V. Sun 3,4,45 & Christopher J. O’Donnell 2,19,43,45

Elevated body mass index (BMI) is heritable and associated with many health
conditions that impact morbidity and mortality. The study of the genetic
association of BMI across a broad range of common disease conditions offers
the opportunity to extend current knowledge regarding the breadth and depth
of adiposity-related diseases. We identify 906 (364 novel) and 41 (6 novel)
genome-wide significant loci for BMI among participants of European (N~1.1
million) and African (N~100,000) ancestry, respectively. Using a BMI genetic
risk score including 2446 variants, 316 diagnoses are associated in the Million
Veteran Program, with 96.5% showing increased risk. A co-morbidity network
analysis reveals seven disease communities containingmultiple interconnected
diseases associated with BMI as well as extensive connections across commu-
nities. Mendelian randomization analysis confirms numerous phenotypes
across a breadthof organ systems, including conditionsof the circulatory (heart
failure, ischemic heart disease, atrial fibrillation), genitourinary (chronic renal
failure), respiratory (respiratory failure, asthma), musculoskeletal and derma-
tologic systems that are deeply interconnected within and across the disease
communities. This work shows that the complex genetic architecture of BMI
associates with a broad range of major health conditions, supporting the need
for comprehensive approaches to prevent and treat obesity.

The global prevalence and disease burden of obesity continues to rise
in the United States and worldwide1,2, posing a major threat to public
health and quality of life. Variation in body mass index (BMI), the
metric commonly used to define obesity, is highly heritable. Obesity

and extreme obesity is strongly associated with a growing number of
chronic diseases, including type 2 diabetes mellitus (T2DM) and cor-
onary heart disease, that are leading causes of preventable morbidity
and mortality. It remains uncertain whether obesity lies in the causal
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pathway, is a confounding factor, or shares a common etiology with
these co-occurring disease conditions. The totality of trials of meta-
bolic bariatric surgery provides consistent efficacy for weight loss and
growing evidence of increased survival and other health benefits
associated with surgery3–5. Randomized clinical trials of pharma-
cotherapy with newer glucose-lowering agents, including SGLT2 inhi-
bitors and GLP-1 receptor agonists, has also shown evidence of weight
loss associated with reduced risk of major cardiovascular outcomes in
patients with type 2 diabetes6, and treatment with GLP-1 receptor
agonists plus lifestyle interventions is associatedwith sustainedweight
loss in obese nondiabetics7, although further study is needed to assess
tolerability and overall clinical benefits8. Nevertheless, data are sparse
on the interconnectedness of BMI-related conditions that could be
influenced by emerging surgical and pharmacological approaches to
obesity prevention and treatment. Mendelian randomization (MR)9

provides estimates of the strength of associations with disease out-
comes using genetic instruments for life-course exposure to BMI,
providing anapproach to investigate the potential causal role ofBMI in
cardiometabolic disease10 and many other common diseases11–13.

A recent meta-analysis of genome-wide association studies
(GWAS) for BMI identified over 700 independent variants in European
descent populations14, implicating a large number of genes and path-
ways regulating satiety, energy balance and metabolism in adipose
tissue. Genetic risk scores (GRS) based on BMI genetic variants
robustly predict BMI andhave enabled their use asgenetic instruments
in MR studies to address the relationship between BMI and several
individual clinical disorders10,12,15. Phenome-wide association studies
(PheWAS) offer a complementary framework to investigate genetic
associations across many common diseases simultaneously13,16. While
there is strong and consistent genetic evidence for the association of
BMI with a number of leading causes of death17, the comprehensive
assessment forMR associations within a PheWAS in a large population
may expand our knowledge of the breadth, depth and inter-
connectedness of conditions associated with obesity.

We report here thousands of genome-wide single nucleotide
polymorphism (SNP) associations with BMI in both European (EA) and
African (AA) descent populations in the Million Veteran Program
(MVP) mega-biobank, including meta-analysis with other large-scale
multi-ancestry consortia and UK Biobank. We harness the breadth of
BMI genetic variation and medical disease phenotypes in the Veterans
Health Administration electronic health record (EHR) to conduct a
phenome-wide MR study of the association of increased BMI with an
extensive range of conditions accounting for a substantial burden of
morbidity and mortality in the population.

Results
Observational analysis of the MVP participants
Among 215,734 EA (93.0% male) and 55,525 AA (87.6% male) MVP
participants, the mean (SD) age at enrollment was 64.0 (13.1) and 57.9
(12.0) years, themean (SD) BMIwas 29.9 (5.9) and 29.2 (4.8) kg/m2, and
the prevalence of obesity (BMI≥30) was 44.2% and 42.9%, respectively.
Descriptive statistics of the EA and AA participants are summarized in
Table 1.

GWAS and genetic instruments in European and African
Americans
The genetic ancestries of the MVP non-Hispanic EAs and AAs were
consistent with the population structure and admixture represented
by the top principal components (Supplementary Fig. 1). The major
analytical procedures including the GWAS, PheWAS and network
analyses are outlined in Supplementary Fig. 2. For EA participants, we
identified 795 genome-wide significant loci (lead SNPs p < 5×10−8) in
MVP, of which 285 were novel (distance > 500 kb and LD r2 < 0.1)
compared with previously reported BMI-associated loci14. In the com-
bined meta-analysis of MVP, UK Biobank and the GIANT Consortium,

including up to 1,122,049 participants of European ancestry, we iden-
tified 2446 independent SNPs in 906 genome-wide significant loci, of
which 364 loci were novel (Supplementary Fig. 3A, Supplementary
Data 1). Using LDSC and GWAS summary statistics, we estimated the
inflation factor (λ) and heritability (h2) of BMI. We observed λ of 1.599,
whichwas typical inGWASwith very large sample sizes, and h2 of 0.188
(SE of 0.008) of BMI. The LDSC intercept of 1.053 (SE 0.011) and small
ratio of 0.062 (SE of 0.013), indicate the majority of the inflation was
due to polygenicity of BMI, not confounding. For AA participants, we
identified 18 significant loci in theMVP. In themeta-analysis combining
the MVP and the AAAGC, we discovered a total of 100 independent
SNPs in 41 BMI-associated loci, of which 33 loci were novel for African
ancestry and 6 loci were novel compared to previous BMIGWAS in any
ancestry group (Supplementary Fig. 3B, Supplementary Data 2).

Using the total of 2,446 and 100 independent SNPs (lead SNPs and
secondary SNPs: pair-wise LD with lead SNPs r2 < 0.1 and p < 5 × 10−8) in
EA and AA participants, respectively, we conducted a weighted GRSBMI

analysis for EA and AA participants using the meta-analysis beta coef-
ficients, after removing MVP, as weights for the GRS. Several statisti-
cally significant SNPs from the main GWAS meta-analysis were only
available in MVP, therefore the final numbers of SNPs in the GRS were
2428 and 94 in EA and AA, respectively. The EA-specific GRSBMI was
associated with BMI (p < 10−314) and explained 5.4% of BMI variance in
the MVP EA participants. The AA-specific GRSBMI was also associated
with BMI (p < 10−314) and explained 0.9% of BMI variance in theMVPAA
participants. Using SNPs and beta-coefficients identified in the EA-
specific BMI GWAS, the weighted EA GRSBMI was associated with BMI
but explained only 1.5% of BMI variance in 55,525 AA participants.

Nongenetic BMI associations with outcomes
We tested associations of BMI with 1,244 disease codes, for which there
were≥200cases andcontrols in EAparticipants, drawn fromphenotype
codes defined in previous PheWAS analyses18. In this cross-sectional
analysis, 661 phecodes were associated with BMI after correction for
multiple testing (see Supplementary Data 3). 75% (n =493) of these
phecodes were positively associated with BMI (increased risk with
higher BMI). Expected findings included positive associations with
obesity/overweight andT2DM, and negative associationswith anorexia.

Phenome-wide Mendelian randomization of BMI and outcomes
We conducted MR analysis of the 1244 phecodes in up to 174,915 EA
participants. Of the phecodes associated with standardized BMI, MR

Table 1 | Characteristics of the Million Veteran Program non-
Hispanic EA and AA participants

EA (N = 215,734)
Mean ± SD

AA (N = 55,525)
Mean ± SD

Male gender n (%) 200,733 (93.0%) 48,628 (87.6%)

Age at Enrollment (years)
mean ± SD

63.95 ± 13.11 57.87 ± 11.96

BMI (kg/m2) mean ± SD 29.88 ± 5.86 29.15 ± 4.78

Overweight
(30>BMI≥25), n (%)

81,382 (37.7%) 20,471 (36.9%)

Obesity (BMI ≥ 30), n (%) 95,277 (44.2%) 23,794 (42.9%)

maxTC (mg/dL)
mean ± SD

224.60 ± 47.95 226.61 ± 48.71

Statin use at enrollment 128,075 (59.4%) 28,854 (52.0%)

CHDa, n (%) 64,597 (29.9%) 12,652 (22.8%)

PADa, n (%) 16,331 (7.6%) 3503 (6.3%)

EA European American, AA African American, BMI bodymass index, SD standard deviation, IQR
Interquartile Range,max maximal level among multiple longitudinal measures, TC Total Cho-
lesterol, CHD coronary heart disease, PAD peripheral artery disease.
adefined using inpatient and outpatient ICD-9 and ICD-10 codes available in EHR data at
enrollment.
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results were also associated (threshold p < 4.02 × 10−5) with 316 codes
across 16 disease groups (Table 2, Fig. 1, Supplementary Data 4). The
presence andmagnitude of a number of associations, including T2DM
(OR= 2.64 per SD of BMI [95% CI 2.54–2.75]), sleep apnea (OR = 2.36
[95% CI 2.26–2.46]), hypertension (OR = 2.20 [95% CI 2.10-2.30]),
ischemic heart disease (OR = 1.67 [95% CI 1.60–1.74]), and asthma
(OR = 1.25 [95% CI 1.17–1.33]), were consistent with recent MR studies
of BMI for these diseases10,11,19. After accounting for multiple testing,
there were a number of MR associations with circulatory system and
metabolic diagnoses that were not previously reported to be sig-
nificant. These included a broad set of cardiovascular diagnoses that
confer increased mortality, such as the subtypes of heart failure with
preserved ejection fraction and heart failure with reduced ejection
fraction, heart block, and cardiomyopathy. In addition, we identified
associationswithmany othermajor conditions that increasemorbidity
and mortality, including major respiratory, genitourinary, digestive,
musculoskeletal and sensory conditions such as respiratory failure,
cholelithiasis, chronic renal failure, diabetic retinopathy and macular
degeneration (Table 2). In a sensitivity analysis, these associations in
the MR analyses were essentially the same in analyses using an alter-
native GRSBMI based on beta coefficients derived from the meta-
analysis that included MVP (correlation coefficient r = 0.999, Supple-
mentary Figs. 4–6).

To further test for the validity of MR associations with the phe-
codes significantly associated by initial MR PheWAS analyses, we
conducted a set of additional MR association tests, including MR
inverse-variance weighted (IVW), median-weighted and Egger regres-
sion analyses (Supplementary Data 5). Associations remained sig-
nificant for most of the phenotypes in one or more of the association
tests. All but one phecodes had p-value less than 0.05 in the IVW MR
analysis, and 78% phecodes had p value less than 0.05 in the MR Egger
analysis, which addresses pleiotropy but is known to be under-
powered.

The burden of the 316 disease codes associated with genetically
influenced BMI in EA increased across increasing BMI categories
(Supplementary Data 6). The number of disease codes was higher in
obese and severely obese persons (for BMI ≥ 30, mean 26.7 [median
23], for BMI≥ 40, mean 32.1 [29]) compared with BMI < 25 (mean
20.2[17]). There was a trend (p < 0.001) for an increasing number of
associated disease codes across BMI categories (Supplementary
Data 6). Among individuals with BMI ≥ 40, 69.9% had more than 20
codes associated with genetically influenced BMI, compared with
40.4% in those with BMI < 25 (Supplementary Data 6).

The MR analysis also showed a negative (protective) direction of
association with BMI for 3.5% (n = 11) phecodes (i.e., decreased risk
with higher BMI), including inguinal hernia, osteoporosis, and alco-
holism. An additional 197 phecodes from 16 disease systems were
associatedwith BMI but were not associated (p >0.05)with genetically
influenced BMI (Supplementary Data 7).

For participants of African ancestry, we examined the association
of the GRSBMI based on the 2428 genome-wide associated SNPs in the
EA meta-analysis to increase strength of the instrumental variable. Of
the phecodes associated with standardized BMI, MR association
results were also statistically significant (p < 6.00 × 10−5) for 61 codes
across 11 disease groups using weights from the EA meta-analysis
excluding MVP (Supplementary Data 8). These included T2DM and
several major diabetic complications, sleep apnea, hypertension,
congestive heart failure and heart failure with preserved ejection
fraction, ischemic heart disease, and chronic kidney disease. There
were 34 phecodes associated using the 2428 SNP GRSBMI with weights
from the AAAGC (Supplementary Data 8). Of these 34, all were asso-
ciated with EA GRS with EA weights. We also constructed a GRSBMI

based on 94 independent SNPs identified by the largest BMI meta-
analysis of AA participants combining data from MVP and the AAAGC
but weighted using the effect sizes from AAAGC alone20. Four

phecodes were associated in a positive direction with genetically
influenced BMI in AA, after controlling for multiple testing (Supple-
mentary Data 8). Apart from BMI-related phecodes (overweight, obe-
sity, morbid obesity), we also noted a relationship between genetically
influenced BMI and sleep apnea (OR = 2.09, [95% CI: 1.48–2.96],
p = 3.04 × 10−5).

Finally, to explore for the potential of reverse causality in the
associations between BMI and conditions in our PheWAS, we selected
10 traits across a range of disease for which GWAS summary data are
available (see Results for PheWAS and Network analysis in the Sup-
plementary Methods). As expected from prior research, there is a
strong bidirectional (two-way) “causal” effect between body mass
index and type 2 diabetes. However, there was no evidence of sig-
nificant (inverse variance weighted-based MR P-value < 0.005) bidir-
ectional effect to BMI for any of the other nine traits (see
Supplementary Table 1 in the Supplementary Methods).

Analysis of disease comorbidity network
We created a human disease network of phecode-based diseases and
disorders to evaluate the comorbidity patterns among 134 3-digit
codes constructed from 316 phecodes associated with genetically
influencedBMI from thephenome-wideMRfindings.We includedonly
conditions that are strongly associated with genetically defined BMI to
focus on networks of conditions that are grounded in strong evidence
for association consistent with a “causal” association with BMI and less
likely to be confounded by other factors. The resulting network map
(117 higher level phecodes with 360 links) identified many diseases
associated with BMI in MR analyses that co-occur in several distinct
patterns that might indicate the typical clinical burden for individual
persons (Fig. 2). The highly connected nodes (i.e., hubs) represent
diagnoses that tend to co-occur with many others (Supplementary
Data 9), reflecting common patterns of symptoms or of specific dis-
eases. The most connected diseases included disorders of attachment
of ligaments or tendons to bone (“peripheral enthesopathies”) and
respiratory symptoms, each strongly correlatedwith 20disease codes.
In a subset of phecodes with multiple connections in the network
analysis (degree > 5 in Supplementary Data 9), evidence for MR asso-
ciation in one or more tests was strong and consistent with a similar
magnitude and direction of effect (Supplementary Data 5). Among the
common disease diagnoses associated with 10 or more conditions
were conditions such as cardiovascular diseases, acute upper respira-
tory illness, and renal failure that account for leading causes of death in
the United States21.

We identified seven disease communities (see Supplementary
Fig. 7A-G)—groups of diseases associated with genetically influenced
BMI that tend to co-occur in the larger disease comorbidity network—
using permutation-based statistical tests (p value < 0.0041, 0.05/12
communities). These communities were comprised of diseases from
multiple disease systems (e.g., Community A: circulatory, endocrine,
nervous systems, genitourinary, and general symptoms). Under-
scoring the extensive interconnectedness of the disease codes asso-
ciated with genetically influenced BMI in this network, each of the top
ten nodes was connected with over a dozen disease codes (ranging
from 13 to 20) within a community and alsowith disease codes in up to
six different communities (Supplementary Data 9).

Discussion
We discovered a total of 370 novel genetic loci for BMI in samples of
European (364) andAfricandescent (6), through a large-scale ancestry-
specific meta-analysis of European and African ancestry GWAS,
including the MVP. We incorporate these newly discovered genetic
variants into the largest phenome-wideMRanalysis performed todate,
identifying several hundred diseases from across 16 different disease
categories in AA and EA US Veterans for which BMI is implicated as a
genetically associated risk factor. While we confirmed a number of
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Table 2 | Selected phenome-wide associations between GRSBMI and clinical diseases in the MR analysis of non-Hispanic EAs

Phecode Description Phenotype group GRSBMI-MR associations

BETA SE OR 95% CI P-value

POSITIVE CONTROLS

278.11 Morbid obesity Endocrine/metabolic 2.35 0.04 10.44 (9.76, 11.18) <10−314

260.6 Anorexia Endocrine/metabolic −1.20 0.20 0.30 (0.20, 0.44) 1.09 × 10−09

INCREASED RISK ASSOCIATED WITH BMI

401 Hypertension Circulatory system 0.79 0.02 2.20 (2.10,2.30) 2.06 × 10−263

428.1 Congestive heart failure (CHF) NOS Circulatory system 0.82 0.03 2.26 (2.11, 2.41) 6.62 × 10−129

428.4 Heart failure with preserved EF Circulatory system 1.26 0.10 3.53 (2.90, 4.28) 3.69 × 10−37

428.3 Heart failure with reduced EF Circulatory system 0.87 0.09 2.39 (2.02, 2.84) 1.10 × 10−23

411 Ischemic Heart Disease Circulatory system 0.51 0.02 1.67 (1.60, 1.74) 8.29 × 10−135

440.2 Atherosclerosis of the extremities Circulatory system 0.48 0.06 1.61 (1.44, 1.80) 4.82 × 10−17

454.11 Varicose veins of lower extremity, symptomatic Circulatory system 1.03 0.07 2.80 (2.45, 3.20) 2.99 × 10−51

427.2 Atrial fibrillation and flutter Circulatory system 0.48 0.03 1.61 (1.52, 1.71) 6.26 × 10−55

426.2 Atrioventricular [AV] block Circulatory system 0.53 0.06 1.70 (1.51, 1.92) 6.86 × 10−18

452.2 Deep vein thrombosis [DVT] Circulatory system 0.51 0.07 1.66 (1.45, 1.90) 8.92 × 10−14

415 Pulmonary heart disease Circulatory system 0.55 0.05 1.72 (1.55, 1.92) 3.10 × 10−24

681 Superficial cellulitis and abscess Dermatologic 0.53 0.03 1.70 (1.62, 1.79) 5.82 × 10−91

707.2 Chronic ulcer of leg or foot Dermatologic 0.82 0.05 2.27 (2.05, 2.51) 6.39 × 10−57

696.4 Psoriasis Dermatologic 0.25 0.05 1.28 (1.16, 1.41) 5.11 × 10−7

550.5 Ventral hernia Digestive 0.63 0.07 1.88 (1.64, 2.15) 2.92 × 10−20

525.1 Loss of teeth or edentulism Digestive 0.27 0.03 1.31 (1.23, 1.39) 1.42 × 10−19

574 Cholelithiasis and cholecystitis Digestive 0.32 0.05 1.38 (1.26, 1.51) 1.75 × 10−12

244 Hypothyroidism Endocrine/metabolic 0.15 0.03 1.16 (1.10, 1.22) 1.43 × 10−07

250.2 Type 2 diabetes Endocrine/metabolic 0.97 0.02 2.64 (2.54,2.75) <10−314

585.3 Chronic renal failure [CKD] Genitourinary 0.60 0.03 1.82 (1.71, 1.94) 1.78 × 10−76

585.1 Acute renal failure Genitourinary 0.64 0.05 1.90 (1.74, 2.08) 1.32 × 10−44

591 Urinary tract infection Genitourinary 0.23 0.04 1.25 (1.17, 1.34) 8.48 × 10−11

594 Urinary calculus Genitourinary 0.17 0.03 1.19 (1.11, 1.27) 5.13 × 10−07

286 Coagulation defects Hematopoietic 0.36 0.06 1.44 (1.28, 1.61) 3.32 × 10−10

110 Dermatophytosis / Dermatomycosis Infectious diseases 0.48 0.02 1.61 (1.54, 1.69) 4.13 × 10−92

41 Bacterial infection NOS Infectious diseases 0.39 0.05 1.48 (1.35, 1.62) 3.83 × 10−17

41.1 Staphylococcus infections Infectious diseases 0.55 0.08 1.74 (1.50, 2.01) 1.38 × 10−13

38 Septicemia Infectious diseases 0.43 0.07 1.54 (1.34, 1.77) 1.18 × 10−09

875 Non-healing surgical wound Injuries/poisonings 0.68 0.10 1.97 (1.64, 2.38) 8.02 × 10−13

871.4 Open wound of toe(s) Injuries/poisonings 0.97 0.22 2.62 (1.72, 4.00) 6.88 × 10−06

871.3 Open wound of foot except toe(s) alone Injuries/poisonings 0.77 0.15 2.15 (1.61, 2.86) 1.64 × 10−07

740.9 Osteoarthrosis NOS Musculoskeletal 0.48 0.02 1.61 (1.55,1.67) 4.15 × 10−128

716.9 Arthropathy NOS Musculoskeletal 0.37 0.03 1.45 (1.36, 1.54) 7.02 × 10−33

710.1 Osteomyelitis Musculoskeletal 0.66 0.07 1.93 (1.67, 2.23) 4.96 × 10−19

720.1 Spinal stenosis of lumbar region Musculoskeletal 0.38 0.04 1.46 (1.33, 1.59) 2.96 × 10−17

735.2 Acquired toe deformities Musculoskeletal 0.36 0.04 1.44 (1.34, 1.55) 1.63 × 10−22

327.3 Sleep apnea Neurological 0.86 0.02 2.36 (2.26, 2.46) <10−314

327.71 Restless legs syndrome Neurological 0.45 0.06 1.57 (1.40, 1.76) 1.80 × 10−14

509.1 Respiratory failure Respiratory 0.62 0.08 1.85 (1.59, 2.16) 6.40 × 10−15

495 Asthma Respiratory 0.22 0.03 1.25 (1.17, 1.33) 1.05 × 10−10

366 Cataract Sense organs 0.34 0.02 1.41 (1.36, 1.47) 7.23 × 10−62

362.2 Degeneration of macula & posterior retina Sense organs 0.29 0.03 1.33 (1.25, 1.43) 1.99 × 10−17

365 Glaucoma Sense organs 0.18 0.03 1.19 (1.13, 1.25) 2.15 × 10−11

782.3 Edema Symptoms 0.94 0.03 2.55 (2.41, 2.71) 4.89 × 10−212

DECREASED RISK ASSOCIATED WITH BMI

550.1 Inguinal hernia Digestive −0.55 0.04 0.58 (0.54, 0.63) 1.11 × 10−45

54 Herpes simplex Infectious diseases −0.37 0.07 0.69 (0.61, 0.79) 4.77 × 10−08

317.1 Alcoholism Mental disorders −0.22 0.03 0.80 (0.75, 0.85) 2.61 × 10−14

317 Alcohol-related disorders Mental disorders −0.22 0.03 0.81 (0.77, 0.85) 3.69 × 10−17

743.1 Osteoporosis Musculoskeletal −0.45 0.05 0.64 (0.58, 0.70) 1.43 × 10−20

Alpha level is p-value of 4.02 × 10−5 (Bonferroni correction: 0.05 /1244). PheWAS disease groups were defined by the PheWASmethod18 OR (odds ratio) was calculated by per SD increase of BMI. A
complete list of all statistically significant MR associations is shown in Supplementary Table 4.
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previously reported associations, including those recently reported in
two recent MR analyses of the UK Biobank13,19, we also identified many
conditions not associated with genetically influenced BMI in previous
MR analyses. There was a striking increase in the burden of MR-
associated disease codes across increasing categories of BMI. In our
analysis of disease comorbidity networks that incorporates all strongly
associated conditions fromourphenome-wideMRanalysis, therewere
seven communities of diseases with extensive intra- and inter-
community connections, underscoring new insights into the com-
plex genetic underpinnings of obesity and its impact on diseases in the
population.

The high prevalence of obesity has continued to grow worldwide
and across the United States1,22,23, including users of the Veterans
Administration health care system24,25. For example, from 2007–2008
to 2015–2016, the age-standardized prevalence of obesity increased in
US adults from 33.7% to 39.6%, respectively23. In the Global Burden of
Disease (GBD) analysis, high BMI accounts for 4 million excess deaths

per year, the majority being related to cardiovascular disease1. In the
same study, 20 disease endpoints were identified through conven-
tional epidemiological studies but noMR analysis was cited to support
causality. The urgent need to understand these links is underscored by
evidence from the recent pandemic of SARS-CoV-2 for an increased
risk of mortality in obese COVID-19 patients26 as well as increased risk
for severe COVID-19 illness associated with obesity supported by two-
sample MR studies27–29.

Through our MR analysis, we confirm and extend the findings
for strong associations with common conditions in the GBD
analysis in EA and AA US Veterans. Furthermore, we also provide
novel strong evidence for associations of BMI with risk for many
specific major circulatory system diseases, including heart failure
with preserved ejection fraction, atrial fibrillation, aortic valve
disease, venous thromboembolism, and abdominal aortic aneur-
ysm. These strong associations highlight a broader impact of
excess adiposity on cardiovascular disease morbidity than
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Fig. 1 | Summary of phenome-wide Mendelian randomization analysis using
GRSBMI. Red dots represent a statistically significant positive association with
GRSBMI (↑GRSBMI =↑disease risk), and black dots represent a statistically sig-
nificant negative association in the MR analysis after multiple testing correction
(two-sided test with nominal p-value less than 4.02 × 10−5). Top 100 associations
with lowest p-values in the MR analysis are labeled including 98 positive
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tems. Abbreviations (clockwise): Circulatory: circulatory system; Co: congenital
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previously appreciated. Additionally, we observed associations in
the MR analysis with a range of other conditions that are either
life-threatening or adversely affect quality of life. These included
life-threatening conditions of the genitourinary (chronic renal
failure) and respiratory (respiratory failure, asthma) systems as
well as conditions associated with substantial morbidity in the
musculoskeletal and dermatologic systems. We noted a limited
number of inverse associations that are consistent with prior
observational studies, such as inguinal hernia30 and
osteoporosis31. We also note other inverse disease associations in
the MR analysis that warrant further investigation, such as pro-
tective associations with selected viral infectious diseases (herpes
simplex virus) and substance abuse. Given the lack of published
studies in populations of African descent, nearly all our MR
association findings are novel in that population.

Our analysis of disease comorbidity networks incorporated over
300 conditions and identified seven communities with extensive intra-
and inter-community associations of multiple BMI-associated condi-
tions. While several communities were enriched for cardiovascular
diseases, others were enriched for skin diseases, renal diseases, pul-
monary diseases, and disorders of the eye and other sensory organs.
This extensive set of conditions with evidence of association with
genetically influenced BMI extends prior evidence for the clinical co-
occurrence of multiple comorbidities conferred by obesity. Our find-
ings are also consistent with a recent study showing substantial benefit
on multiple outcomes, in obese diabetic patients treated with meta-
bolic weight reduction surgery32.

In summary, we harnessed genetic variation discovered in large-
scale meta-analysis of both European and African ancestry GWAS,
revealing associations of increased genetic risk of BMI for several

hundred diseases in a phenome-wide Mendelian randomization ana-
lysis and intra- and inter-community connections in an extensive dis-
ease comorbidity network. Our findings underscore the broad impact
of obesity on multiple interconnected chronic and acute diseases and
highlight the public health imperative to prevent and treat obesity in
order to reduce downstreammorbidity and mortality from numerous
obesity-associated diseases.

Methods
Study participants
The design of the MVP has been previously described33. Briefly, indi-
viduals aged 19 to 104 years with the mean age of 62 years have been
recruited from over 60 Veterans Health Administration medical cen-
ters nationwide since 2011. Each veteran’s EHR is being integrated into
the MVP biorepository, including inpatient International Classification
of Diseases (ICD9/10) diagnosis codes, Current Procedural Terminol-
ogy (CPT) procedure codes, clinical laboratory measurements, and
reports of diagnostic imaging modalities.The MVP research database
integrates the extensive EHRdata fromeach enrolledVeteran.MVPhas
received ethical and study protocol approval by the VA Central Insti-
tutional ReviewBoard in accordancewith the principles outlined in the
Declaration of Helsinki.

Phenotype
EHR data from clinical examinations were available for MVP partici-
pants from as early as 2003. BMI is calculated as the weight (in kilo-
grams) divided by the height (in meters) squared. We calculated the
average BMI using all measurements within a three-year window
around the date ofMVP enrollment (i.e., 1.5 years before/after the date
of enrollment), excluding height measurements that were >3 inches

Fig. 2 | Phenotypic networkmap.Nodes represent phecodes at the three-digit level and the links represent significant disease-disease associations (ϕ-correlation). Node
size is proportional to network connectivity (degree). Individual disease communities (A-G) are described in the Supplementary Materials.
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(0.0762 meters) or weight measurements >60 pounds (27.22 kilo-
grams) from the average of each participant25.

Genetic data and genome-wide association analysis
DNA extracted from participants’ blood was genotyped using a cus-
tomized Affymetrix Axiom® biobank array, the MVP 1.0 Genotyping
Array, with genotype imputation to the 1000 Genomes reference
panel34 as detailed in the Supplementary Materials. We used both self-
reported ethnicity and genetic ancestry to define non-Hispanic Eur-
opean American (EA) and Non-Hispanic African American (AA) parti-
cipants in the MVP.

Genetic association with BMI in the MVP cohort was examined
separately among non-Hispanic EA (N = 215,734) and non-Hispanic AA
(N = 55,525) participants. For each ancestry group, BMI was stratified
by sex and adjusted for age, age-squared, and the top ten genotype-
derived principal components of ancestry in a linear regressionmodel.
The resulting residuals were transformed to approximate normality
using inverse normal scores. Imputed and directly measured genetic
variants were tested for association with the inverse normal trans-
formed residuals of BMI through linear regression assuming an addi-
tive genetic model.

We performed ancestry-specific inverse-variance weighted fixed-
effects meta-analysis using METAL35. For EA participants, we meta-
analyzed GWAS results from MVP, UK Biobank, and the Genomic
Investigation of Anthropometric Traits (GIANT) Consortium. For AA
participants, we meta-analyzed GWAS results from MVP with the
African Ancestry Anthropometry Genetics Consortium (AAAGC) con-
sortium. GWAS results were summarized using FUMA (http://fuma.
ctglab.nl/)36. Novel loci were defined as those with genome-wide sig-
nificance (p < 5 × 10−8) and a distance > 500 kb from previously pub-
lished variants14,20,37,38.

Phenome-wide association and Mendelian randomization
analyses
We constructed EA- and AA-specific weighted genetic risk scores of
BMI (GRSBMI) to perform phenome-wide MR analysis, using the inde-
pendent and genome-wide significant SNPs from the respective BMI
meta-analysis. Beta coefficients from the respective ancestry-specific
meta-analyses, excluding MVP, were used as weights for each GRS in
order to avoid overfitting.

The phenotypes characterizing disease diagnoses include the full
catalog of phecodes (N = 1813) from sixteen disease systems deter-
mined at participant enrollment16, and all analyses were limited to
phecodes with at least 200 cases and 200 controls in the 174,531 EA or
49,695 AA participants (N = 1244 for EA and N = 833 for AA).

For the PheWAS, logistic regression models were used to assess
the association between standardized BMI [(bmi-mean(bmi))/sd(bmi)]
and phecodes, adjusted for age, sex and the top 10 genotype-derived
principal components. Phenotypes were considered associated if they
had a p-value less than 4.02 × 10−5 and 6.00 × 10−5 (Bonferroni cor-
rected p-value of 1,244 and 833 traits) for EA and AA, respectively.

To search for evidence of genetic association of BMI with BMI-
associated traits, we then conducted the phenome-wideMRanalysis in
EA andAAparticipants separately using ancestry-specificGRSBMI as the
genetic instrumental variable6. We used the same set of phecodes
included in the PheWAS. To explore in depth the validity of MR asso-
ciations, we examined further for associations using inverse-variance
weighted (IVW), MR Egger regression and weighted median MR
analysis39 for all PheWAS phecodes that were significant in the
phenome-wide PRS analysis. To identify significant phenotype asso-
ciations, we used the same Bonferroni correction for the PheWAS to
account for the total number of phenotypes (N = 1244 for EA and
N = 833 for AA) tested in the initial MR PheWAS. Details of phenomic
data quality control, case definitions, and association analysis are
described in the Supplementary Materials.

Disease comorbidity networks
We created a phenotypic network map to evaluate the comorbidity
patterns among the diagnosis codes for which there was plausible
evidence (p < 4.02 × 10−5) for BMI in the causal pathway in the MR
analysis. The nodes in the network represent disease diagnosis
codes rounded up to their correspondent 3-digit level and links
between nodes represent the strength and significance of disease
co-occurrence (comorbidity). To measure the comorbidity
strength for diseases i and j, we used the ϕ-correlation ϕij

40, and
determined their significance using t-test corrected for multiple
testing. The ϕ-correlation, which is Pearson’s correlation for binary
variables, can be expressed mathematically as the following equa-
tion (Eq. 1):

ϕij =
CijN � PiPj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PiPjðN � PiÞðN � PjÞ
q ð1Þ

where Cij is the number of patients affected by both diseases, N is the
total number of patients in the population and Pi and Pj are the pre-
valence of diseases i and j. Only pairs with adjusted p-value < 0.05 and
ϕ >= 0.2 were considered. Next, we used the network structure to
identify groups of diseases (i.e., communities) that show higher
comorbidity (links in the network) among diseases in the group in
comparison with the remaining diseases in the network. We applied
the Louvain community detection algorithm41 and the qstest method42

for evaluation of community significance.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Due to US Department of Veterans Affairs (VA) regulations and our
ethics agreements, the individual-level data sets used for this study are
not permitted to leave the Million Veteran Program (MVP) research
environment and VA firewall. This limitation is consistent with other
MVP studies based on VA data. However, the MVP data are made
available to researchers with an approved VA andMVP study protocol.
The full summary level association results from genome-wide asso-
ciation analyses in the MVP and the meta-analysis from this report are
available through a standard application to dbGaP (accession number
phs001672). The only restriction is that use of the data is limited to
health/medical/biomedical purposes anddoes not include the studyof
population origins or ancestry. Use of the data does include methods
development research (e.g., development and testing of software or
algorithms) and requestors agree to make the results of studies using
the data available to the larger scientific community. Summary statis-
tics of BMI GWAS from the GIANT and UK Biobank meta-analysis are
available from: https://portals.broadinstitute.org/collaboration/giant/
index.php/GIANT_consortium_data_files. Summary association statis-
tics from AAAGC BMI meta-analyses are available from dbGaP at
accession number phs000930.
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