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Fragmentation of outage clusters during the
recovery of power distribution grids
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Hui Tian 1 & Albert-László Barabási 2

The understanding of recovery processes in power distribution grids is limited
by the lack of realistic outage data, especially large-scale blackout datasets. By
analyzing data from three electrical companies across the United States, we
find that the recovery durationof an outage is connectedwith thedowntimeof
its nearby outages and blackout intensity (defined as the peak number of
outages during a blackout), but is independent of the number of customers
affected. We present a cluster-based recovery framework to analytically
characterize the dependence between outages, and interpret the dominant
role blackout intensity plays in recovery. The recovery of blackouts is not
random and has a universal pattern that is independent of the disruption
cause, the post-disaster network structure, and the detailed repair strategy.
Our study reveals that suppressing blackout intensity is a promising way to
speed up restoration.

Power outages are becoming increasingly prevalent as a consequence
of extreme weather patterns, aging power systems, and surging elec-
tricity need1. In 2020, economic lossdriven by reporteddisasters in the
US has doubled the previous average, ranking to a historical 95 billion
dollars2. Most previous research focuses on preventing disruptions,
especially cascading failures3–8. However, reliability itself is not enough
for maintaining system resilience. Some methods proposed for sup-
pressing outages could even increase the risk of large blackouts9–12.
Recoverability, the ability to restore service quickly after disturbances,
is as crucial as reliability in resilience.

Recovery research in power grids is usually topology-based12–15,
and is best performed for transmission grids, where the system
structure is easy to capture. These findings, unfortunately, cannot be
extended to thedistributiongrid,which is designed andoperatedquite
differently from meshed transmission grids. The distribution grid is a
tree-like network, with the trunk at the power substation and leaves at
the customers16,17. Small outages upstream could lead to the failure of
all components downstream. As a result, the distribution grid is more
vulnerable, accounting for themajority of failures in power systems18,19.

The recovery of power distribution systems has attracted con-
siderable attention from the engineering community. A number of

studies focused on developing optimal resource scheduling mechan-
isms to obtain effective restoration plans20–22. Methods such as routing
repair crews, switching breakers, and adjusting voltage and frequency
set points were adopted to reduce outage duration for customers.
Outage duration reflects the direct service quality experienced by
customers, the estimation of which is critical yet difficult. Multiple fac-
tors, including weather conditions23–25, outage locations26, and outage
causes24,25 are reported to impact the recovery process. Given the
complexity and opacity of variables involved in estimating restoration
times, the role each factor plays in recovery remains to be explored27.

Compared with the considerable engineering advances, relatively
little work has been done on outage restoration from a network sci-
ence perspective. One of the hurdles preventing the attempts is the
lack of detailed recovery data. Indeed, acquiring high-resolution and
large-scale recovery data remains a challenge for further research in
the field. Though large blackouts are not uncommon6,28–30, when and
where they occur is largely unpredictable. Outage monitoring neces-
sitates a long-term tracking that also requires fine-grained updates
(at least to the magnitude of minutes). Unlike transmission outages,
which are reported to government agencies such as North American
Electric Reliability Corporation (NERC), information about distribution
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outages is shared differently by each utility, if at all. Consequently,
most of the time, studies are focused on a single blackout or small
region scenarios19,31–33.

Aside from obtaining data, modeling the outage recovery behavior
poses three challenges: (i) Factors that influence the recovery speed are
largely unknown, (ii) the grid condition varies on a wide range of areas
and time scales, and (iii) computing data with multi-dimensional para-
meters can pose the problem of curse of dimensionality6. These chal-
lenges have made most previous research on smaller scales and
cascading dynamics inapplicable. Similar hurdles exist in the recovery
study of the broader context of complex networks, including trans-
portation systems34, communication networks35, and financial markets36.

Here, we study recovery characteristics by examining real outage
and recovery data from both major blackouts and daily operations
across the United States. The dataset, introduced in ref. 37, offers the
most complete and granular source of information on the recovery of
power distribution grids. We find that the restoration duration of an
outage correlates with the downtime of its nearby outages and the
intensity of an blackout, but is independent of the number of custo-
mers affected. Moreover, we reveal the existence of intrinsic recovery
behavior of distribution grids that is independent of microscopic
weather and network details, which can be well predicted by a pro-
posed depolymerisation-like model. These results can help make
proactive responses in face of coming extreme weather and develop
efficient mechanisms for speeding up recovery.

Results
Factors affecting recovery duration
From November 2018 to April 2020, we tracked outage reports from
three electric companies in three US states (Massachusetts, New York,
and Texas). The long-term tracking has recorded 682,733 outages in
total, mostly from distribution grids, making the dataset ideal for the
research of recovery (details are in Methods and Supplementary
Note 1). Each “outage” represents the power interruption in a given
area or a section of the power grid caused by component failures, such
as failed substations and overload circuits. Customers without power
within a service area are called affected customers of an outage, the
number of which varies from fewer than 5 to over 13,000. We tested
the impact of customers affected by outages and found that the
recovery duration of outages is independent of the number of affected
customers. We also found that the probability density function can be
well fitted by an inverse Weibull distribution (Fig. 1). Accordingly, our
analysis uses outagenumbers insteadof affected customer numbers as

the metric for evaluating the extent of damage caused by a blackout.
Note that the number of affected customers is a useful blackoutmetric
related to the power loss and the system average interruption duration
index (SAIDI)38.

For the purposes of this analysis, we define a blackout as a col-
lection of many outages within the same state/time frame (details in
Methods), an example of which from Massachusetts beginning on 25
February 2019 is shown in Fig. 2a. All red shadows, defined as outage
clusters, represent a group of outages that are physically near to each
other, with color depth denoting the number of outages within. Small
outage clustersmerge into larger clusters as failures spread (from time
t1 to t2), and can also shrink into smaller ones when recovery dom-
inates (from t2 to t4). The total number of outages recorded varies with
the size of those clusters, as shown in Fig. 2b. At time t2, the overall
number of outages reaches its highest value N, which we define as
blackout intensity. The blackout intensity reflects the peak level of
damage caused by a disruption12–14, and is a metric that can be cap-
tured for different blackouts (Supplementary Fig. S1). By using black-
out intensity, individual analysis for diverse disruptions can be
simplified, thus helping recovery study.

We evaluate the impact of blackout intensity on recovery by
analyzing the average time needed for outageswithin a blackout to get
fully recovered. As depicted in Fig. 2c, the repair time needed climbs
with the logarithm of blackout intensity N. The upward trend suggests
that, as damage accumulates,more time-consuming and costly repairs
are needed, with the pace of repair limited by availability of spares and
repair crews. We note that there tends to be a logarithm-like depen-
dence between blackout intensity N and average recovery hours T.

The restoration of outages is different from the repair of failed
components. Repairing one component fixes some but not all outages
downstream because another downstream component failure can keep
the power-loss state until all potential failures are resolved. In other
words, a single outage can be caused by multiple component failures
and one component failure can influence the recovery of multiple
observed outages. An outage’s restoration is thus correlated with its
ambient outages. Here, “ambient” does not mean that the distance
between two outages has to be lower than a given threshold. As long as
the two outages are connected to one damaged component, the dis-
tance between them can vary widely. Recovery of outages is also
impacted by the characteristics of their surrounding infrastructures
such as the type of feeder, device age, and whether there are looped
connections26. Moreover, repair crews are likely to choose to repair
nearby outages at the same time, for logistical reasons. These behaviors
together indicate that the recovery duration of nearby outages is
interrelated. A mapping between duration of outages and their nearby
outages supports this hypothesis (Fig. 3). For each outage i with power
loss duration Ti, we count the average recovery time of its spatially
nearest n outages (denoted as 〈Tin〉). Dividing outages into groups based
on their 〈Tin〉 and calculating themean of Ti (denoted as 〈T〉) for outages
in each group (represented by 〈Tn〉), we find a positive correlation
between 〈T〉 and 〈Tn〉. The positive relationship found here in different
states and different companies suggests that dependence between
neighboring outages is an intrinsic property of distribution grid recov-
ery, independent of themicroscopic interconnectiondetails that change
from state to state and from company to company. This finding also
suggests the existence of a universal recovery model for different dis-
tribution grids.

Cluster-based modeling of outage recovery
The detailed real-time topology of a power distribution grid would
facilitate the recovery analysis, but is typically unavailable for research,
and often an accurate map is unavailable, even for power grid com-
panies, due to frequent structure changes, sparse monitoring devices,
and safety concerns39,40. Given this, we develop a theory that does not
require a specific physical topologyby using the dependencewe found

Fig. 1 | Probabilitydensity functionof recoveryduration. Four groups of outages
with different number of affected customers are plotted. The similarity of the four
curves, fitted by a universal inverse Weibull distribution function, illustrates the
independence between the outage’s recovery duration and the number of affected
customers.

Article https://doi.org/10.1038/s41467-022-35104-9

Nature Communications |         (2022) 13:7372 2



between neighboring outages during recovery. Representing outages
with nodes and linking any two nodes who have dependence (if
known), we could ultimately get a cluster with all outages connected.
Thereby, outage recovery can be modeled as a cluster fragmentation
process. When a failed component in distribution grids gets repaired,
the triggered dependence vanishes and corresponding links are
removed. If sufficient links are dropped, the initial cluster would
decompose into smaller ones. Possibly, we could get a small cluster
including only one stand-alone node that has no link to others, which

means that all the unfavorable factors preventing the outage from
recovery are removed and the outage gets repaired. By iterating the
process, we will eventually arrive at the stage where all links are
cleared, indicating all outage repairs are complete. The system can
then go back to its normal working state. Here, we consider the
breakup of dependence between outages instead of directly resolving
outages because as discussed above, typically there is no one-to-one
mapping between outage repair and component failure repair. The
fixing of one component does not mean that outages will be restored
simultaneously. Instead, it indicates that a drawback deterring those
outages from fixing is overcome, which can be represented by the
break of dependence.

The whole cluster fragmentation process above is analogous to
depolymerization in materials science41,42. In the polymer degradation
process, a widely considered model is that any chain-shaped polymer
would breakup with a rate that depends on its length. A k-length chain
can randomly cut one of its bonds and breakup into two individual
chains. Although bond-cutting is random along any given chain, the
overall degradation is non-random since different chains break with
probabilities proportional to their lengths41. We extend this model to 2D
plane by defining the bond of chains to be links between two sub-
clusters they connect. A network visualization based on this fragmen-
tation is illustrated in Fig. 4a. Note that links are not physical connec-
tions, but represent the dependence between outages, with a topology
that is different from the tree-like structure of power distribution grids.
The dependence can result from the physical structure (connection to
the same failed/protected component), infrastructure characteristics
(e.g., overhead or underground feeder), or the order of repair by utility
crews. Undirected dependence links, modeled as Fig. 3, show that an
outage will not only have impact on, but it is also influenced by its
neighbor outages. When breaking the initial 10-node cluster into two
parts with size 4 and size 6, we adopt a partition line that is perpendi-
cular to the segment between the two furthest nodes in the network. In
this case, there are two ways to get expected sizes for the two sub-

Fig. 2 | The impact of blackout intensity on recovery. a Illustration of the spa-
tiotemporal evolution of a blackout on 25 February 2019 in Massachusetts. Red
regions represent outages. Heatmap reproduced using OpenStreetMap and QGIS
software. bNumber of outages during the evolution of the blackout in a. At time t2,
the outage number reaches its peak value,which is definedas theblackout intensity

(denoted as N). c Statistics of the average hours 〈T〉 needed for a outage to recover
during blackouts with different blackout intensities. The error bars show standard
deviations of given blackout intensity groups. The fitting curve is obtained by
general B-Spline. The interval of each group is half-open. Blackouts used for cal-
culation are tabulated in Supplementary Table S1.

Fig. 3 | Correlation between outages and their nearby outages on recovery
duration. The average recovery duration of outages 〈T〉 versus that of their geo-
graphically nearest n outages 〈Tn〉. The data are taken from four blackouts across
the United States. Specifically, two MA blackouts that began on 25 February 2019
are reported from Eversource and National Grid, respectively; the NY blackout
occurred a day before MA blackouts, and the TX data was recorded by Entergy on
25 October 2019. Without loss of generality, we set n = 5 as the results are insen-
sitive to the choice of n (Supplementary Fig. S2).
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clusters as shown by the dashed red and orange lines. If the red line is
adopted, the initial cluster breaks three links and fragments into a
6-node blue cluster and a 4-node green cluster. With recursive frag-
mentation, five clusters occur on stage 3 with two of them (red and
purple dots) containing only one node.

When this cluster-based recovery framework is applied to power
distribution grids, we predict that, theoretically, the survival function of
outages in each blackout follows an exponential distribution with an
exponent −2ϕ(N) (Methods), which coincides well with what we found
from real data (solid lines in Fig. 4b). Here, ϕ(N) is a function of N,
representing the impact of blackout intensity on recovery. By observing
27 blackouts and 8 daily outage events across the United States, the
form of ϕ(N) is fitted in Fig. 4c. It shows that ϕ(N) can be well
approximated by a stretched exponential function, with an upper bound
0.32 when N tends to one. The upper bound shows the fastest repairing
rate a power distribution grid could have. When the blackout intensity
augments, recovery speed gradually decreases, which elucidates why
the average duration of outages would increase when facing larger
damage (Fig. 2c). In addition, ϕ(N) is sensitive to the change of blackout
intensity whenN is between 100 and 1000. Most blackouts we observed
fall in this interval, meaning that suppressing blackout intensity can
dramatically boost recovery. Besides,ϕ(N) equals zerowhenN is infinite,
which is in line with the expectation that the time needed to repair an
infinite number of outages would be infinite.

It is worth noting that the four sets of outage data in Fig. 4c are
reported by different companies serving different geographical
regions of the US and are caused by distinct disruptions happening at
different times. Given the well-fitted stretched exponential function
and that the four datasets can come from the same distribution
(Supplementary Note 3), we find that there is a universal recovery
pattern behind distribution networks. The pattern is determined by

blackout intensity but independent of exogenous factors such as the
specific causes of blackouts, post-disaster network structure, and
companies’ repairing strategies.

To further test our theory, we perform a simulation of the pro-
posed cluster-based recovery framework and compare the results with
real data. As shown in Fig. 4b, the exponential decay can be well pre-
dicted by the proposed cluster-based recovery framework and coin-
cideswith real blackout performance. Despite the good agreement, we
note that the exponential restoration holds only for a fraction of the
entire dataset, that is, the medium part of the empirical distributions.
The deviations could come from two reasons. First, in the initial stage,
the existenceof small outage clusterswithout connections to the giant
component could result in the deviation from simulated results. Those
small clusters, having a higher probability to generate stand-alone
nodes, will skew the theoretic exponential decay to a faster speed.
Second, in the final part of the restoration, the statistics of outages
with longdurations are sparse, whichmay result in deviations fromour
theory. These deviations can impact the exponent, but are of little
significance for the present comparisons. Because our main goal is to
investigate the dependence between outages during recovery, we will
concentrate on cluster-based behavior. The relative flat decreasing
trend at the initial stage of the simulated curves lies in that there is only
one cluster at the beginning. The fragmentation of the initial cluster to
generate size-one clusters takes some time since there is nopreference
to generate small-size clusters like what real-world polymer fragmen-
tation does42.

We note that while randomly selecting an outage to repair with a
constant repair rate of 2ϕ(N) also results in anexponential distribution,
it does not capture the association with nearby outages as depicted in
Fig. 3. Specifically, for random recovery, the center outage’s shutdown
time remains flat as the duration of nearby outages increases (Fig. 5),

Fig. 4 | Schematic dynamics and simulation results of the cluster-based
recovery framework togetherwith the comparison of real data. a Illustration of
a cluster fragmentation process during outages' restoration. Each node represents
an outage and each link denotes the failure dependence between two nodes. At
stage 1, the initial cluster breaks into two smaller clusters. One in blue with 6 nodes
and the other one in green with 4 nodes. The blue cluster, with its larger size, has a
higher fragmentation rate than the greenoneandbreaks into two3-node clusters at
the next stage. At state 3, two individual nodes (red and purple) lose all of their

failure dependent links, thus get repaired. b Survival function of outages for three
observed blackouts and a month record of daily operation. Exponential distribu-
tion can be accepted by all the four curves. During the simulation, the positions of
outages are the same as real data. For each blackout, 1000 realizations are simu-
lated. c Illustrationof a stretched exponential fit to the empirical functionϕ(N) with
respect to the blackout intensity N. Blackouts and daily outage events used for
estimation are given in Supplementary Tables S1 and S2, respectively.
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while our proposed cluster-based recovery framework reproduceswell
the nearby outage influence found from real data.

Discussion
Using real data from three power distribution companies in three states
of the United States, we have examined the factors that impact the
recovery of outages in power distribution grids. Our findings show that
the restoration speed of an outage is not only determined by the overall
scale of the damage in the network (blackout intensity), but also by the
number of outages nearby. Although we might expect outages that
affect a large number of customers have priority in recovering, the
recovery duration of an outage is actually independent of its affected
customer number and its probability density distribution can be well
approached by an inverse Weibull distribution function. Therefore, we
use the number of outages instead of affected customers in recovery
analysis and find a contracting process of outages during restoration. To
characterize the phenomenon, we have adopted an analytical frame-
work based on the polymer fragmentation model. In addition, a large-
scale analysis of data from multiple blackouts reveals that the recovery
speed of a blackout is an inherent behavior that is only determined by its
intensity, potentially independent of microscopic weather, repairing
strategies, and network details. This suggests that outage recovery can
be accelerated by limiting blackout intensity. Methods that could break
the underlying recovery dependence between nodes in advance to
prevent large blackouts could provide a promising future for recover-
ability enhancement. The breaking of the dependence might be
achieved by updating the energy supply devices of a block. The
robustness-strengthened block can thus impede neighboring blocks
from generating a large outage cluster.

Blackout intensity is used in the study to quantify the impact of
disruptions. The intensity itself is a compound result of multiple fac-
tors such as weather, the expanse of systems, and maintenance
activities. A function reflecting the impact of those factors on blackout
intensity is of vital importance, yet pretty hard to capture. Survival
models like the Cox proportional hazard model43 might be a good
alternative for mapping. If such a mapping could be established,
engineers andmaintainers of power grid companies can carry out risk-
informed preparations and investments, to some degree, suppressing
possible blackout intensity in advance.

In the proposed cluster-based recoverymodel, we assume there is
failure dependence between outages and get an exponential survival

function of outages, which agrees with the empirical data. The
dependence is compounded bymultiple factors, such as connection in
road network, cause of damage, and available repairing resources.
Although the theoryfits well with real data, how could all the factors be
mapped to build failure dependence links remains to be explored. A
possible way is using the interdependent network. In an inter-
dependent network, full or partial interdependence connects two
adjacent layers44, either directed45 or undirected37, with each layer
representing one related factor. In this way, the coupling strength
between any two outages could be obtained and used as a metric to
determine the failure dependence. Moreover, interdependence ana-
lysis can also provide insights for reducing failure dependence in
power grids and preventing the formation of large outage clusters,
thus speeding up the recovery process.

For realistic blackouts, our results suggest the existence of an
underlying fragmentation process of outage clusters during blackouts.
It is assumed in the theory that an outage cluster decomposes at a rate
proportional to its current cluster size and a function of blackout
intensity. The function obtained from real data fits well with a stret-
ched exponential function, indicating a universal recovery behavior of
blackouts that is independent of microscopic factors such as disaster
intensity, post-disaster network topology, and blackout position.
When the spreading of outages during the initial blackout process is
considered, a revision of the cluster-based recovery framework is
needed. The fragmentation-only model needs to be extended to a
more general aggregation-fragmentation form42 to reflect the routine
time-overlapped outage and restore processes. The aggregation
simulates the propagation of failures, the dynamics of which may be
modeled by a Poisson process46.

Instead of focusing on recovery coupling between different
networks37, our study calls attention to the underlying dependence
between different components within the power distribution grids. It
indicates that a deeper understanding of recovery dependence to
various contextual variables is necessary to capture the possible phy-
sical roots and thus to improve the overall efficiency of power market
management and operation. It also provides circumstantial evidence
that although priority-based recovery strategies can minimize the
economic losses of important customers, the price is paid by the rest
of the customers as the distribution of recovery duration would not
change once the blackout intensity is set. The inequality from a social
perspective worth further attention and study.

The power distribution grid is only one type of distributed net-
works that face large-scale damage. Systems such as distributed edge
computing network47 and device layer of industrial Internet of Things48

face similar dilemmas as networks become increasingly complicated.
Our study could be extended to other distributed networks, inspiring
further collaborations between a wide range of academic and indus-
trial fields.

Methods
Outage dataset
Data used in this study is recorded from publicly available websites
published by three electricity companies in the United States: National
Grid, Eversource, and Entergy. Data from National Grid collects outa-
ges that happened in Massachusetts and New York, while data col-
lected from Eversource and Entergy cover the area of Massachusetts
and Texas, respectively.

The outage dataset comprises a total of 682,733 outages from
November 2018 to April 2020. Each outage sample contains detailed
information such as the time when the loss of power is reported, time
when the outage is restored, the number of customers affected, lati-
tude, and longitude. The accuracy of each sample is one minute in
time. Although samples during daily operations take up most of the
data, tens of large blackouts (i.e., blackout intensity > 100 outages) are
recorded, which accounted for roughly 0.05% of the total observed

Fig. 5 | Comparison between the proposed cluster-based recovery, random
recovery, and real data. The average recovery duration of outages 〈T〉 versus that
of their geographically nearest n outages 〈Tn〉. The histogram is obtained from real
outage data of a blackout that began on 25 February 2019 in Massachusetts. Each
bar represents the average duration of outages whose nearest n outages' mean
recovery time fall in the given duration interval. We set n = 5 as the results are
insensitive to the choice of n (Supplementary Fig. S2). The curves shown are cor-
responding simulation results of random recovery (red) and proposed cluster-
based recovery (blue).
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outages. Supplementary Note 1 shows the detailed information of the
datasets used, with Supplementary Table S1 listing the identified
blackouts used in this study.

Definition of “blackouts" vs. “outages"
Blackout describes the condition when an entire region (state-level)
is suffering power loss, while outage depicts the out-of-service in a
given area resulting from equipment failures. Those failures can
either be caused by direct nodal or line damage or indirectly by
failures transmitted from upstream. Depending on the extent of the
damage, an outage, defined by the live update lists of outages pub-
lished by the utilities, can affect a single house or an entire neigh-
borhood. The coordinates of an outage in this work are the
coordinates published by the utilities on their maps and correspond
to the center of the area without power due to the outage. Therefore,
a blackout contains multiple power outages appearing and vanishing
during its duration. Within a blackout duration, the number of
outages will go up from a low number to a peak (blackout intensity,
refer also to Fig. 2b) and then go back to its normal state. In this
article, we only consider blackouts with at least 100 outages.
Otherwise, the event belongs to daily operations. Some recorded
blackouts and daily outage events are tabulated in Supplementary
Tables S1 and S2. Unless otherwise stated, the start/end time of a
blackout is 12 am on the given day.

Cluster-based recovery process
For a given cluster with an initial size N (blackout intensity), the dis-
tribution of cluster size evolves as:

dSk
dt

= � SkðtÞ
Xk�1

i = 1

Fi,k�i + 2
XN

j =K + 1

SjðtÞFk,j�k ð1Þ

where Sk(t) is the number of outage clusters of size k at time step t and
Fi,k−i represents the intrinsic rate that a size k cluster breaks up into a
size i cluster and a size k − i cluster. Thefirst termon the right-hand size
specifies all possible breakups of a size k cluster, and the second term
accounts for the new generations of clusters with size k from the
collapsing of larger clusters, where the factor of 2 indicates that either
of the two sub-clusters can be of size k.

We have already shown that blackout intensity and nearby failures
influences recovery speed. Without loss of generality, let us assume
Fi,k−i=ϕ(N)k, in which the fragmentation rate of a cluster depends on its
own size and a function of blackout intensity it is suffering. Here, we
adopt k instead of a function of k because a simple closed-form solution
can already be obtained by iteration in the following. It is also in accord
with the corrected Akaike information criterion (AICc)49, since introdu-
cingmore variables into Fi,k−iwouldonly add thecomplexity for analysis.

Given the initial cluster distribution Sk(0) = 1 only for k =N, a
closed-form solution can be obtained through iteration of (1) as fol-
lows

SkðtÞ=
N
k
e�ϕðNÞk2tðeϕðNÞkt � e�ϕðNÞktÞ, for 1≤ k<N: ð2Þ

Detailed derivation process are shown in Supplementary Note 2. Note
that when k = 1, S1(t) represents the number of repaired outages as a
function of time. The unrepaired fraction of outages (U(t)) has the
form of

UðtÞ= 1� S1ðtÞ
N

= e�2ϕðNÞt : ð3Þ

That is, the original N outages disappear exponentially fast in time and
the exponent is proportional to ϕ(N).

Data availability
The data associatedwith this research is available on GitHub at https://
github.com/Hughie-HaoWu/Outage-recovery.

Code availability
The code used for data analysis is available onGitHub athttps://github.
com/Hughie-HaoWu/Outage-recovery50.
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