
Statistical mechanics is offering new insights into the structure and dynamics of
the Internet, the World Wide Web and other complex interacting systems

The physics of the Web
Albert-Lasdo Barabasi

TH E INTERNET appears to have taken on a life of its own ever
since the National Science foundation in the US gave up stew-
ardship of the network in 1995. New lines and routers are
added continually by thousands of companies, none of which
require permission from anybody to do so, and none of which
are obliged to report their activity. This uncontrolled and de-
centralized growth has turned network designers into scientific
explorers. All previous Internet-related research concentrated
on designing better protocols and faster components. More
recently, an increasing number of scientists have begun to ask
an unexpected question: what exactly did we create?

One thing is clear. While entirely of human design, the
emerging network appears to have more in common with a
cell or an ecological system than with a Swiss watch. Many
diverse components, each performing a specialized job, con-
tribute to a system that is evolving and changing at an in-
credible speed. Increasingly, we are realizing that our lack of
understanding of the Internet and the Web is not a com-
puter-science question. Rather it is rooted in the absence of a
scientific framework to characterize the topology of the net-
work behind it.

Networks and graphs have long been studied in a prolific
branch of mathematics known as graph theory. Until re-
cently, the absence of detailed topological information about
large complex systems, such as communication networks
or cells, meant that networks were modelled as "random
graphs". The most widely investigated random-graph model
was introduced by Hungarian mathematicians, Paul ErdOs
and Alfred Renyi, in 1960. Their influential model consists of
JV nodes, each of which has a probability, p, of being con-
nected to another node via a link (figure 1 a).

For such a random network the probability that a node has
k links follows a Poisson distribution, implying that it is expo-
nentially rare to find a node with a high number of links. But
the Erdos—Renyi model raises an important question: do we
believe that networks observed in nature are truly random?
Could the Internet really offer us the relatively fast and seam-
less service we currently enjoy if the computers were connec-
ted randomly to each other? Or, to take a more extreme
example: would you be able to read this article if the chem-
icals in your body decided to react randomly to each other,
bypassing the rigid chemical web that they normally obey?

Intuitively the answer is no - we all feel that behind every
complex system there is an underlying network with non-
random topology. The challenge for physicists is to unearth
the signatures of order from the apparent chaos of millions
of nodes and links. Following this path, in the last few years
we have learned diat the tools of statistical mechanics are

i
A map of some 100000 Internet routers and the physical connections between
them. This map was created by tracing the route taken by numerous packets of
data sent from one computer to many others. It reveals that a few highly
connected nodes keep the network together.

particularly well suited to this task, offering an unexpected
perspective on die structure and dynamics of many truly
complex interacting systems, including the Internet and its
offshoot die World Wide Web.

Complex networks
According to a recent study by Steve Lawrence of the NEC
Research Institute in New Jersey and Lee Giles of Pennsylva-
nia State University, die Web contains nearly a billion docu-
ments. The documents represent the nodes of this complex
network and they are connected by locators, known as URLs,
that allow us to navigate from one Web page to another.

To analyse the Web's properties, we need to draw a map
that tells us how die pages link to each other. This information
is routinely collected by search engines, such as Google and
AltaVista. But the companies that have developed diese
engines are often reluctant to share the information for re-
search purposes. Thus we needed to obtain a map of our
own. This is exacdy what the current audior together with
Reka Albert and Hawoong Jeong, also at the University of
Notre Dame, did in 1998. We wrote a robot or Web crawler
t_hat started from a given Web page, collected all the outgoing
links, and followed these links to visit more pages and collect
even more links. Through this iterative process we mapped
out a tiny fraction of the Web, amounting to less than 0.05%
of its total size.

As die Web is a "directed" network, each document can be
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characterized by the number of incom-
ing, A-,,, and outgoing, k0M, links. The first
quantities that we investigated were the
probability distributions, P(k), that a ran-
domly selected Web page has exactly
k\n or koul links, respectively. Guided by
random-graph theory, we expected that
P(k) would follow a binomial distribution
and would converge to a Poisson distri-
bution when the number of nodes was
large. So it was rather surprising when
our data indicated that P(k) decayed via a
power law - a completely different type
of distribution (figures 1 c and d). Indeed,
we found that the probability was given
by k y, where y= 2.45 for outgoing links
and y= 2.1 for incoming links, a result
that was confirmed in a parallel study
by Ravi Kumar and co-workers at IBM's
Almaden Research Center in California.

There are major topological differ-
ences between networks with Poisson
and power-law distributions. For ran-
dom networks, most nodes have ap-
proximately the same number of links,
k ~ (k), where (k) represents the average
value. The exponential decay of P(k)
guarantees the absence of nodes with
significantly more than (k) links. In con-
trast, the power-law distribution implies
that there is an abundance of nodes
with only a few links, and a small — but
significant - minority that have a very
large number of links.

A road map that has cities as nodes
and motorways as links is a good example of an exponential
network because most cities are located at the intersection of
motorways. In contrast, networks that can be described by a
power-law distribution look more like the airline route maps
found in glossy in-flight magazines. Although most airports
are served by a small number of carriers, there are a few hubs,
such as Chicago or Frankfurt, from which links emerge to
almost all other US or European airports, respectively. Just
like the smaller airports, the majority of documents on the
Web have only a few links (figures 1 e andf).

Since a typical node in an exponential network has k~ (k)
links, the average number of links is an important characteris-
tic. However, (k) is not a particularly significant quantity in a
power-law distribution. This absence of an intrinsic scale in k
prompted us to call networks with a power-law degree distri-
bution "scale free". The finding that the Web is a scale-free net-
work raised an important question: would such inhomogenous
topology also emerge in other complex systems?

Recently an answer to this question came from an unex-
pected direction — the Internet itself. The Internet forms a
physical network, the nodes of which are "routers" that na-
vigate packets of data from one computer to another, and
groups of routers and computers that are called "domains".
The links that join the nodes together are the various physical
connectors, such as phone wires and optical cables (figure 2).
Due to the physical nature of the connections, this network
was expected to be different from the Web, where adding a

1 Random and scale-free networks

logk
(a) The Erdos-Renyi random-graph model is constructed by laying down N nodes and connecting each
pair with probability p. This network has N = 10 and p = 0.2. Since 45 connecting pairs can be formed, we
expect the network to contain approximately 9 links, (b) The scale-free model assumes that the network
continually grows by the addition of new nodes. A new node (red) connects to two existing nodes in the
network (black) at time t +1 . This new node is much more likely to connect to highly connected nodes, a
phenomenon called preferential attachment, (c) The network connectivity can be characterized by the
probability P(k) that a node has k links. For random graphs P(k) is strongly peaked at k = (k) and decays
exponentially for large k. (d) A scale-free network does not have a peak in P(k), and decays as a power law
P(k) ~ k'yat large k. (e) A random network is rather homogeneous, i.e. most nodes have approximately the
same number of links, (0 The majority of nodes in a scale-free network have one or two links, but a few
nodes have a large number of links: this guarantees that the system is fully connected. More than 60% of
nodes (green) can be reached from the five most connected nodes (red) compared with only 27% in the
random network. This demonstrates the key role that hubs play in the scale-free network. Both networks
contain the 130 nodes and 430 links.

link to an arbitrary remote page is as easy as linking to a com-
puter in the next room.

To the surprise of many, the network behind the Internet
also appears to follow a power-law distribution. This result
was first noticed by three brothers, Michalis Faloutsos of the
University of California at Riverside, Petros Faloutsos of the
University of Toronto and Christos Faloutsos of Carnegie
Mellon University. When they analysed the Internet at the
router and domain level, they found that the degree distribu-
tion follows a power law with an exponent of y= 2.5 for the
router network and y= 2.2 for the domain map. This indi-
cates that the wiring of the Internet is also dominated by sev-
eral highly connected hubs.

Separated by 19 clicks
In 1967 Stanley Milgram, a sociologist at Harvard University
in the US, surprised the world with a bold claim: any person
in the world can be traced to any other by a chain of five or six
acquaintances. That is, despite the six billion inhabitants of
our planet, we live in a "small world". This feature of social
networks came to be known as "six degrees of separation"
after John Guare's Broadway play and movie. In addition,
sociologists have repeatedly argued that nodes (i.e. people) in
social networks are grouped in small clusters, representing
circles of friends and acquaintances in which each node is
connected to all other nodes, with only a few weak links to die
world outside their own circle of friends.
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2 The Web and Internet as complex networks

7
(a) The nodes of the World Wide Web are Web documents, each of which is
identified by an unique uniform resource locator, or URL. Most documents,
like our Web site, www.nd.edu/~networks, contain URLs that link to other
pages. These URLs represent outgoing links, three of which are shown
(blue arrows). Currently there are about 80 documents worldwide that point
to our Web site, represented by the incoming green arrows. While we have
complete control over the number of the outgoing links, koot, from our Web
page, the number of incoming links, km, is decided by other people, and thus
characterizes the popularity of the page, (b) The Internet itself, on the other
hand, is a network of routers that navigate packets of data from one computer
to another. The routers are connected to each other by various physical or
wireless links and are grouped into several domains, (c) The probability that a
Web page has km (blue) or kM (red) links follows a power law. The results are
based on a sample of over 325 000 Web pages collected by Hawoong Jeong.
(d) The degree distribution of the Internet at the router level, where k denotes
the number of links a router has to other routers. This research by Ramesh
Govindan from University of Southern California is based on over 260 000
routers and demonstrates that the Internet exhibits power-law behaviour.
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While the existence of such local clustering and small-
world behaviour agrees with our intuition, these features were
not expected to be relevant beyond social systems. It came
as a surprise, therefore, when Duncan Watts of Columbia
University and Steven Strogatz of Cornell University found
that many networks in nature, such as the brain of the worm
C. elegans, as well as the network of movie actors in Hollywood
and the network of power lines in western America, simul-
taneously have a small node separation and display a high
degree of clustering. The question is whether the Internet
and the Web follow this paradigm?

For a proper answer we need a full map of the Web. But,
as Lawrence and Giles have shown, even the largest search
engines cover only 16% of the Web. This is where the tools
of statistical mechanics come in handy - they can be used
to infer the properties of the complete network from a finite
sample. To achieve this our group at Notre Dame constructed
small models of the Web on a computer, making sure that the
distribution of links matched the functional form that we had
previously measured.

Next we identified the shortest distance between two nodes,
defined as the number of clicks required to get from one page
to another, and averaged over all pairs of nodes to obtain
the average node separation, d. Repeating this process for
networks of different sizes using a technique called "finite
size scaling" — a standard procedure in statistical mechanics —
we inferred that the average node separation is given by
d= 0.35 + 2.06 log(jV), where ̂ is the number of nodes. This
expression predicts typically that the shortest path between
two pages selected at random among the 800 million nodes

(i.e. documents) that made up the Web in 1999 is around 19 -
assuming that such a path exists. This path, however, is not
guaranteed because the Web is a directed network, i.e. a link
from one page to another does not imply the existence of an
inverse link. Consequently, not all pairs of nodes can be con-
nected — a feature factored into the calculation that leads to
the expression for d.

An extensive study by a collaboration between IBM,
Compaq and AltaVista has subsequently found that the
shortest distance between any two nodes in a sample of
200 million is 16. This value is in good agreement with our
prediction of 17 for a sample of this size.

These results clearly indicated that the Web represents a
small world, i.e. the typical number of clicks between two
Web pages is about 19, despite the fact that there are now over
one billion pages out there. And as Lada Adamic of Stanford
University in the US has shown, the Web also displays a high
degree of clustering. The probability that two neighbours of
a given node are linked together is much greater than the
value expected for a random network without clustering. Re-
sults from our group indicate that the Internet follows suit —
the typical separation between two routers is nine. In other
words, a packet of data can reach any router within 10 hops,
and the network is highly clustered, demonstrating that the
small-world paradigm has rapidly infiltrated the Earth's
newly developing electronic skin as well.

Evolving networks
Why do systems as different as the Internet, which is a phy-
sical network, and the Web, which is virtual, develop similar
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3 Mapping to a Bose gas

network Bose gas fit-get-rich phase Bose-Einstein condensate

A schematic illustration of the mapping between the scale-free model with fitness and a Bose gas. (a) In the network each node is characterized by a randomly
selected fitness, r|j, shown by the different colours. The fitness describes the node's ability to compete for links with other nodes - the fittest are more likely to
acquire more links as the network grows. We assign the energy e, to each node with fitness r\, using ti,=exp(-pe,) to obtain a Bose gas with random energy levels.
In the mapping, the fittest nodes (high T|() result in the lowest energy levels (small £,). A link from node / to node./ in the network corresponds to a particle in level
Ej in the Bose gas. The network evolves over time by adding a new node (%) that connects to two other nodes (dashed lines). In the Bose gas this corresponds to
the addition of a new unoccupied energy level (E6, dashed), and the deposition of two new particles in e1 and e5, the energy levels to which % connects. As the
network grows, the number of energy levels and particles increase linearly in time. The calculations show that, depending on the shape of the distribution from
which the energy levels (fitnesses) are selected, two distinct phases can develop, (b) In the "fit-get-rich" phase there is no clear winner. The particle density
decreases as the energy level increases, (c) In contrast, when Bose-Einstein condensation takes place, the fittest node attracts a significant fraction of all links.
This node appears as a highly populated, lowest energy level while higher energies remain only sparsely populated.

scale-free networks? We have recently traced the emergence
of the power-law distribution back to two common mechan-
isms that are absent from the classical-graph models, but are
present in many complex networks.

First, traditional graph-theory models assume that the
number of nodes in a network is fixed. In contrast, the Web
continually expands by the addition of new pages, while the
Internet grows by the installation of new routers and commu-
nication links. Second, while random-graph models assume
that the links are distributed randomly, most real networks
exhibit a phenomenon called "preferential attachment", i.e.
they contain nodes that have a high probability of being
connected to another node with a large number of links. For
example, we are far more likely to link our Web page to the
most popular documents on the Web, as these are the ones we
know about. Meanwhile, network engineers tend to connect
their company or institution to the Internet through points
that have a high bandwidth, which inevitably implies a high
number of other consumers, or links.

Based on these two ingredients, we constructed a simple
model in which a new node was added to the network at every
time step, linking it to some of the nodes already present in
the system (figure 1 b). The probability, IT(A;), that a new node
connects to a node with k links follows preferential attach-
ment, i.e. Yl(k) = k/i,^ where die denominator is summed
over all nodes.

Numerical simulations indicate that the resulting network
is indeed scale-free, and die probability that a node has blinks
follows a power law with an exponent of y = 3. This simple
model illustrates how growth and preferential attachment
joindy lead to the appearance of a hierarchy. A node rich
in links increases its connectivity faster than the rest of the
nodes because incoming nodes link to it widi higher prob-
ability — this "rich-gets-richer" phenomenon is present in
many competitive systems.

Traditionally networks were viewed as static objects with
a constant number of nodes. In contrast, scale-free models
view networks as dynamical systems that self-assemble and
evolve in time through the addition and removal of nodes
and links. Such a dynamical approach follows the long tra-

dition of physics-based modelling, aiming to capture what
nature did when it assembled these networks. The expecta-
tion behind tiiese modelling efforts is tiiat if we capture the
microscopic processes that drive die placement of links and
nodes, then the structural elements and the topology will
follow. In addition, viewing evolving networks as dynamical
systems allows us to predict many of their properties analyt-
ically. For example, in die scale-free model the rate at which
a node acquires new links is given by dk/dt — mllft), where m
is die number of links that a new node has when it joins die
network. This expression predicts that each node increases its
connectivity over time according to the power law k(t) — r,
where P = lh is die dynamic exponent.

The scale-free model is die simplest example of an evolving
network. In real systems, however, the probability T\(k) that a
new node connects to one witii k links can be nonlinear. As
Paul Krapivsky and Sid Redner of Boston University have
shown, such nonlinearities result in deviations from power-law
behaviour. Moreover, links are often added to real networks
between existing nodes, or nodes and links can disappear.
Indeed, Jose Mendes of die University of Porto in Portugal
and colleagues, plus several other groups, have demonstrated
that the presence of such events can modify the exponent, y,
allowing for practically any value between one and infinity. In
addition, Luis Amaral and collaborators at Boston University
have shown diat aging and saturation effects limit die number
of links that a node can acquire, thereby inducing exponential
cut-offs in P(k).

Power laws regularly greet us in critical phenomena and
describe, for example, die freezing of water or die ordering of
spins in a magnet. But there is a crucial difference between
these systems and evolving networks. In critical phenomena
the exponents are fixed and universal, i.e. they cannot be
tuned easily by modifying some parameters in the system. In
networks, however, the exponent y can be changed continu-
ously by changing almost every parameter that governs the
link and nodes. Thus universality as we know it is absent.
However, most complex systems share the same dynamical
character as evolving networks, indicating that uieir topology
and evolution cannot be divorced from each other.
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Bose-Einstein condensation
In most complex systems, the nodes vary in their ability to
compete for links. Some Web pages, for instance, quickly
acquire a large number of links through a mixture of good
content and marketing. A good example is the Google search
engine, which in less than two years has become one of the
most connected nodes of the Web.

This competition for links can be incorporated into the
scale-free model by adding a "fitness", T|,, to each node, i,
to describe its ability to compete for links at the expense of
other nodes. A Web page with good up-to-date content and
a friendly interface, for example, has a greater fitness than a
low-quality page that is only updated occasionally. The prob-
ability Tl(k,) that a new node connects to one with £, links is
then modified such that !!(£,•) = T|,•ki/1,jT\jkj.

The competition generated by the various fitness levels
means that each node evolves differently in time compared
with odiers. Indeed, die connectivity of each node is now
given by kj(t) = t^\ where the exponent (5(T|) increases with T|.
As a result, fit nodes (ones with large T|) can join the network at
some later time and connect to many more links man less-fit
nodes that have been around for longer.

Amazingly, such competitive-fitness models appear to have
close ties with Bose-Einstein condensation, currently one of
the most investigated problems in atomic physics. In an atomic
gas, the atoms are distributed among many different energy
levels. In a Bose—Einstein condensate, however, all the parti-
cles accumulate in the lowest energy ground state of the sys-
tem and are described by the same quantum wavefunction.

By replacing each node in the network widi an energy level
having energy e, = exp(-Pi"|,), Ginestra Bianconi and I found
that the fitness model maps exacdy onto a Bose gas (figure 3).
According to this mapping, the nodes map to energy levels
while the links are represented by atoms in these levels.

The behaviour of a Bose gas is uniquely determined by
the distribution g(e) from which the random energy levels (or
fitnesses) are selected. One expects that the functional form of
g(£) depends on the system. For example, the attractiveness of
a router to a network engineer comes from a rather different
distribution than the fitness of a dot.com company compet-
ing for customers.

For a wide class of g(€) distributions, a "fit-get-richer" phe-
nomena emerges. Although die fittest node acquires more
links than its less-fit counterparts, mere is no clear winner.
On the other hand, certain g(e) distributions can result in
Bose-Einstein condensation, where the fittest node does
emerge as a clear winner. It develops a condensate by acquir-
ing a significant fraction of the links, independent of the size
of the system. In network language this corresponds to a
"winner-takes-all" phenomenon. While the precise form of
the fitness distribution for the Web or the Internet is not
known yet, it is likely thatg(e) could be measured in the near
future. Eventually we may be able to answer the intriguing
question: could the Web or the Internet represent a gigandc
Bose condensate?

The Achilles' heel of the Internet
As the world economy becomes increasingly dependent on
the Internet, a much-voiced concern arises. Can we maintain
the functionality of the network under the inevitable failures
or frequent attacks by computer hackers? The good news is
that so far the Internet has proven rather resilient against fail-

4 Error and attack tolerance
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The robustness of a complex system against errors and failures can be tested
by investigating the effect of removing nodes, (a) Removing the circled nodes
causes the network to break into several smaller clusters, (b) The largest
cluster decreases in size from 22 nodes to seven when we disconnect three,
i.e. 14%, of the nodes, (c) Percolation theory predicts that a random network
will break into tiny clusters when a critical fraction, fc, of nodes is removed.
This prediction does not hold for scale-free networks as can be shown by
plotting the of size of the largest cluster versus the fraction of nodes removed.*;
Calculations show that the cluster size only falls to zero when all the nodes T
have been disconnected (green). However, if the most-connected nodes are
removed then the scale-free network will break at a small fc. (d) By randomly
removing domains from the Internet, we found that more than 80% of the
nodes have to fail before the network fragments (green). However, if hackers
targeted the most connected nodes (red), then they could achieve the same
effect by removinga small fraction of the nodes.

ures: while about 3% of the routers are down at any moment,
we rarely observe major disruptions. Where does this robust-
ness come from? While there is a significant error tolerance
built into die protocols diat govern the switching of data
packets, we are beginning to learn that die scale-free topology
also plays a crucial role.

In trying to understand the topological component of error
tolerance, we can get help from a field of physics known as
percolation. Percolation theory tells us that if we randomly
remove nodes, men at some critical fraction,^, die network
should fragment into tiny, non-communicating islands of
nodes. To our considerable surprise, simulations on scale-free
networks do not support this prediction. Even when we re-
move up to 80% of die nodes, die remainder still form a com-
pact cluster (figure 4).

The mystery was resolved last year by Reuven Cohen of
Bar-Ilan University in Israel and co-workers. They showed
diat as long as die connectivity exponent y is less tiian three
(which is the case for most real networks, including the Inter-
net) the critical direshold for fragmentation \sfc = 1. This is a
wonderful demonstration diat scale-free networks cannot be
broken into pieces by die random removal of nodes, a result
also supported by the independent calculations of Duncan
Callaway and collaborators at Cornell University.

This extreme robustness to failures is rooted in the inhomo-
geneous topology of the network. The random removal of
nodes is most likely to affect small nodes ratiier tiian hubs
widi many links because nodes significandy outnumber hubs.
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Sociologists are borrowing tools from network
researchers to better visualize the relationships
between groups of people. This figure shows a social
network in Canberra, Australia.

Therefore the removal of a node does
not create a significant disruption in
the network topology, just like the clo-
sure of a small local airport has little
impact on international air traffic. The
bad news is that the inhomogeneous
topology has its drawbacks as well.
Scale-free networks are rather vulner-
able to attacks. Indeed, the absence of
a tiny fraction of the most-connected
nodes will cause the network to break
into pieces.

These findings uncovered the under-
lying topological vulnerability of scale-
free networks. While the Internet is not
expected to break under the random
failure of the routers and lines, well informed hackers can
easily design a scenario to handicap the network.

Computer viruses that disable local computers and pro-
grammes are another threat in the on-line world. Recently
Romualdo Pastor-Satorras from Unversitat Politecnica de
Catalunya in Barcelona, Spain, and Allessandro Vespigniani
from the International Centre for Theoretical Physics in
Trieste, Italy, demonstrated that viruses behave rather differ-
ently on scale-free networks compared with random networks.

For decades, both marketing experts and epidemiologists
have intensively studied so-called diffusion theories. These
theories predict a critical threshold for virus spreading. Vir-
uses that are less contagious than a well defined threshold
will inevitably die out, while those that are above the thresh-
old will multiply exponentially and eventually reach the
whole system. The Barcelona-Trieste group, on the other
hand, has found that the threshold for a scale-free network
is zero. In other words, all viruses, even those that are only
weakly contagious, will spread and persist in the system. This
explains why "Love Bugf', the most damaging virus so far, is
still the seventh most frequent virus, a year after its introduc-
tion and supposed eradication.

Our improved understanding of real networks might pro-
vide new insights into the spread of ideas and biological
viruses among the human population, networks that appear
to be as inhomogenous as scale-free networks. It also sug-
gests that we should take another look at the volumes of re-
search written on the interplay of network topology, fads
and epidemics.

Outlook
The original creators of the Internet could not have foreseen
the exploding demand for bandwidth and the emergence
of new technologies. These changes will require new com-
munication protocols that can respond to this high and
sophisticated demand. Moreover, any change in the current
protocols requires extensive testing and optimization, which
is very sensitive to the underlying network topology.

The recent realization that all models based on the ran-
dom-network topology are simply inappropriate to describe
real systems sparked a race among computer scientists to cre-
ate new generators with a more realistic topology. An equally
high-stakes race is on to develop better search engines by
capitalizing on the emerging understanding of the Web's
large-scale topology. In this respect, Google appears to be
winning - it became the most popular search engine by rank-

ing documents based on the topolo-
gical position of the nodes within the
network, cleverly exploiting the Web's
inhomogenous architecture.

But the implications of network re-
search resonate well beyond computer
science. Scale-free networks appear to
be the architecture of choice for nature
when it comes to complex systems. By
working togetiier with Zoltan Oltvai,
a cell biologist from Northwestern
University in the US, we have recently
found that the metabolic and the
protein-protein interaction networks
of cells follow a scale-free topology in
all investigated organisms. Moreover,

Ricard Sole and collaborators at Barcelona have shown that
some food webs that depict how species interact with each
other are best described as scale-free networks. And it appears
that the phenomenal robustness of these networks plays a key
role in both of these systems. The network's inhomogeneity
contributes to the well known resilience of cells against ran-
dom mutations and explains why ecosystems do not collapse
under the random disappearance of species.

The advances discussed here represent only the tip of the
iceberg. Networks represent the architecture of complexity.
But to fully understand complex systems, we need to move
beyond this architecture and uncover the laws that govern the
underlying dynamical processes, such as Internet traffic or
reaction kinetics in cells.

Most importantly, we need to understand how these two
layers of complexity- architecture and dynamics - evolve to-
gether. These are all formidable challenges for physicists, bio-
logists and mathematicians alike, inaugurating a new era that
Stephen Hawking recently called the century of complexity.
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