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Competition and multiscaling in evolving networks

G. Bianconi
1 and A.-L. Barabási

1,2

1 Department of Physics, University of Notre Dame - Notre Dame, IN 46556, USA
2 Institute for Advanced Studies, Collegium Budapest
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Abstract. – The rate at which nodes in a network increase their connectivity depends on
their fitness to compete for links. For example, in social networks some individuals acquire
more social links than others, or on the www some webpages attract considerably more links
than others. We find that this competition for links translates into multiscaling, i.e. a fitness-
dependent dynamic exponent, allowing fitter nodes to overcome the more connected but less
fit ones. Uncovering this fitter-gets-richer phenomenon can help us understand in quantitative
terms the evolution of many competitive systems in nature and society.

The complexity of many systems can be attributed to the interwoven web in which their
constituents interact with each other. For example, the society is organized in a social web,
whose nodes are individuals and links represent various social interactions, or the www forms
a complex web whose nodes are documents and links are URLs. While for a long time these
networks have been modeled as completely random [1,2], recently there is increasing evidence
that they in fact have a number of generic non-random characteristics, obeying various scaling
laws or displaying short length-scale clustering [3–16].

A generic property of these complex systems is that they constantly evolve in time. This
implies that the underlying networks are not static, but continuously change through the addi-
tion and/or removal of new nodes and links. Consequently, we have to uncover the dynamical
forces that act at the level of individual nodes, whose cumulative effect determines the system’s
large-scale topology. A step in this direction was the scale-free model [8], that incorporates
the fact that network evolution is driven by at least two coexisting mechanisms: 1) growth,
implying that networks continuously expand by the addition of new nodes; 2) preferential
attachment, mimicking the fact that a new node links with higher probability to nodes that
already have a large number of links. With these two ingredients the scale-free model predicts
the emergence of a power law connectivity distribution, observed in many systems [3, 8–10],
ranging from the Internet to citation networks. Furthermore, extensions of this model, in-
cluding rewiring [11] or aging [12, 13], have been able to account for more realistic aspects
of the network evolution, such as the existence of various scaling exponents or cutoffs in the
connectivity distribution.
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The scale-free model neglects an important aspect of competitive systems: not all nodes
are equally successful in acquiring links [17]. The model predicts that all nodes increase their
connectivity in time as ki(t) = (t/ti)β , where β = 1/2 and ti is the time at which node i has
been added into the system. Consequently, the oldest nodes will have the highest number of
links, since they had the longest timeframe to acquire them.

On the other hand, numerous examples convincingly indicate that in real systems a node’s
connectivity and growth rate does not depend on its age alone. For example, in social systems
some individuals are better in turning a random meeting into a lasting social link than others.
On the www some documents through a combination of good content and marketing acquire
a large number of links in a very short time, easily overtaking older websites. Finally, some
research papers in a short timeframe acquire a very large number of citations. We tend to
associate these differences with some intrinsic quality of the nodes, such as the social skills of
an individual, the content of a web page, or the content of a scientific article. We will call this
the node’s fitness, describing its ability to compete for links at the expense of other nodes.

In this paper we propose a simple model that allows us to investigate this competitive as-
pect of real networks in quantitative terms. Assuming that the existence of a fitness modifies
the preferential attachment to compete for links, we find that different fitness translates into
multiscaling in the dynamical evolution: the time dependence of a node’s connectivity depends
on the fitness of the node. We develop the continuum model for this competitive evolving
network, allowing us to calculate β analytically and derive a general expression for the con-
nectivity distribution. We find that the analytical predictions are in excellent agreement with
the results obtained from numerical simulations.

The fitness model. – The examples discussed above indicate that nodes have different
ability (fitness) to compete for links. To account for these differences we introduce a fitness
parameter, ηi, that we assign to each node, and assume that it is unchanged in time (i.e. ηi

represents a quenched noise) [18]. Starting with a small number of nodes, at every timestep
we add a new node i with fitness ηi, where η is chosen from the distribution ρ(η). Each
new node i has m links that are connected to the nodes already present in the system. We
assume that the probability Πi that a new node will connect to a node i already present in
the network depends on the connectivity ki and on the fitness ηi of that node, such that

Πi =
ηiki∑
j ηjkj

. (1)

This generalized preferential attachment [8] incorporates in the simplest possible way that
fitness and connectivity jointly determine the rate at which new links are added to a given
node, i.e. even a relatively young node with a few links can acquire links at a high rate if it
has a large fitness parameter. To address the scaling properties of this model we first develop
a continuum theory, allowing us to predict the connectivity distribution [8, 11, 12]. A node
i will increase its connectivity ki at a rate that is proportional to the probability (1) that a
new node will attach to it, giving

∂ki

∂t
= m

ηiki∑
j kjηj

. (2)

The factor m accounts for the fact that each new node adds m links to the system. If
ρ(η) = δ(η − 1), i.e. all fitness are equal, (2) reduces to the scale-free model, which predicts
that ki(t) ∼ t1/2 [8]. In order to solve (2) we assume that similarly to the scale-free model
the time evolution of ki follows a power law, but there is multiscaling in the system, i.e. the
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dynamic exponent depends on the fitness ηi,

kηi
(t, t0) = m

(
t

t0

)β(ηi)

, (3)

where t0 is the time at which the node i was born. The dynamic exponent β(η) is bounded,
i.e. 0 < β(η) < 1 because a node always increases the number of links in time (β(η) > 0)
and ki(t) cannot increases faster than t (β(η) < 1). We first calculate the mean of the sum∑

j ηjkj over all possible realizations of the quenched noise {η}. Since each node is born at a
different time t0, the sum over j can be written as an integral over t0:〈∑

j

ηjkj

〉
=

∫
dηρ(η) η

∫ t

1

dt0 kη(t, t0)

=
∫

dη ηρ(η)m
(t − tβ(η))
1 − β(η)

. (4)

Since β(η) < 1, in the t → ∞ limit tβ(η) can be neglected compared to t, thus we obtain〈∑
j

ηjkj

〉
t→∞= Cmt(1 + O(t−ε), (5)

where

ε = (1 − max
η

β(η)) > 0,

C =
∫

dηρ(η)
η

1 − β(η)
. (6)

Using (5), and the notation kη = kηi
(t, t0), the dynamic equation (2) can be written as

∂kη

∂t
=

ηkη

Ct
, (7)

which has a solution of form (3), given that

β(η) =
η

C
, (8)

thereby confirming the self-consistent nature of the assumption (3). To complete the calcula-
tion we need to determine C from (6) after substituting β(η) with η/C,

1 =
∫ ηmax

0

dηρ(η)
1

C
η − 1

, (9)

where ηmax is the maximum possible fitness in the system [19]. Apparently, (9) is a singular
integral. However, since β(η) = η/C < 1 for every value of η, we have C > ηmax, thus the
integration limit never reaches the singularity. Note also that, since

∑
j ηjkj ≤ ηmax

∑
j kj =

2mtηmax, we have, using (5), that C ≤ 2ηmax.
Finally, we can calculate the connectivity distribution P (k), which gives the probability

that a node has k links. If there is a single dynamic exponent β, the connectivity distribution
follows the power law P (k) ∼ kγ , where the connectivity exponent is given by γ = 1/β + 1.
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However, in this model we have a spectrum of dynamic exponents β(η), thus P (k) is given by
a weighted sum over different power laws. To find P (k) we need to calculate the cumulative
probability that for a certain node kη(t) > k,

P (kη(t) > k) = P

(
t0 < t

(m

k

)C/η
)

= t
(m

k

)C
η

. (10)

Thus the connectivity distribution, i.e. the probability that a node has k links, is given by
the integral

P (k) =
∫ ηmax

0

dη
∂P (kη(t) > k)

∂t

∝
∫

dηρ(η)
C

η

(m

k

)C
η +1

. (11)

Scale-free model. – Given the fitness distribution ρ(η), the continuum theory allows us to
predict both the dynamics, described by the dynamic exponent β(η) (eqs. (8) and (9)), and
the topology, characterized by the connectivity distribution P (k) (eq. (11)). To demonstrate
the validity of our predictions, in the following we calculate these quantities for two different
ρ(η) functions. As a first application, let us consider the simplest case, corresponding to the
scale-free model, when all fitnesses are equal. Thus we have ρ(η) = δ(η−1), which, inserted in
(9), gives C = 2, which represents the largest possible value of C. Using (8) we obtain β = 1/2
and from (11) we get P (k) ∝ k−3, the known scaling of the scale-free model. Thus the scale-
free model represents an extreme case of the fitness model considered here, the connectivity
exponent taking up the largest possible value of γ.

Uniform fitness distribution. – The behavior of the system is far more interesting, how-
ever, when nodes with different fitness compete for links. The simplest such case, which
already offers nontrivial multiscaling, is obtained when ρ(η) is chosen uniformly from the
interval [0, 1]. The constant C can be determined again from (9), which gives

exp[−2/C] = 1 − 1/C, (12)

whose solution is C∗ = 1.255. Thus, according to (8), each node will have a different dynamic
exponent, given by β(η) ∼ η

C∗ . Using (11) we obtain

P (k) ∝
∫ 1

0

dη
C∗

η

1
k1+C∗/η

∼ k−(1+C∗)

log(k)
, (13)

i.e. the connectivity distribution follows a generalized power law, with an inverse logarithmic
correction.

To check the predictions of the continuum theory we performed numerical simulations of
the discrete fitness model, choosing fitness with equal probability from the interval [0, 1]. Most
important is to test the validity of the ansatz (3), for which we recorded the time evolution
of nodes with different fitness η. As fig. 1 shows, we find that ki(t) follows a power law for
all η, and the scaling exponent, β(η), depends on η, being larger for nodes with larger fitness.
Equation (6) predicts that the sum 〈∑i ηiki〉/mt → C∗ in the t → ∞ limit, where C∗ is given
by (12) as C∗ = 1.255. Indeed as the inset in fig. 1 shows, the discrete network model indicates
that this sum converges to the analytically predicted value. Figure 1 allows us to determine
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Fig. 1 – (a) Time dependence of the connectivity, kη(t), for nodes with fitness η = 0.3, 0.6 and 0.9.
Note that kη(t) follows a power law in each case and the dynamic exponent β(η), given by the slope
of k(t), increases with η. While in the simulation the fitness of the nodes has been drawn uniformly,
between [0, 1], in the figure we show only the connectivity of three nodes with selected fitness. In
the simulation we used m = 2 and the shown curves represent averages over 20 runs. Inset: Asymp-
totic convergence of C(t) = (

∑t

i=1
ηiki)/t to the analytically predicted limit C∗ = 1.255, shown as

a horizontal line (see eq. (12)). (b) The same as (a) for the exponential fitness distribution demon-
strating that k(t) follows (14). The inset shows the convergence of D(t) = (

∑t

i=1
ηiki)/(mtln(t)) to

D∗ = 0.45.

numerically the exponent β(η), and compare it to the prediction (8). As the inset in fig. 2
indicates, we obtain excellent agreement between the numerically determined exponents and
the prediction of the continuum theory. Finally, in fig. 2 we show the agreement between the
prediction (13) and the numerical results for the connectivity distribution P (k).

An interesting feature of the numerically determined connectivity distribution (fig. 2) is the
appearance of a few nodes that have higher number of links than predicted by the connectivity
distribution. Such highly connected hubs, appearing as a horizontal line with large k on the
log-log plot, are present in many systems, including the www [3] or the metabolic network of a
cell [20], clearly visible if we do not use logarithmic binning. This indicates that the appearance
of a few “super hubs”, i.e. nodes that have connections in excess to that predicted by a power
law, is a generic feature of competitive systems.

Exponential fitness distribution. – If the ρ(η) distribution has an infinite support, the
integral (9) contains a singularity at η = C, and the self-consistent calculation cannot be
applied. To recover the behavior of such systems, we studied numerically the case ρ(η) = e−η.
In a system with a finite support for which there is a ηmax such that ρ(ηmax) �= 0, the system
will reach ηmax within a finite time. That is, within a short timeframe a η′ will appear that is
infinitely close to ηmax, and the likelihood of finding an η > η′ goes to zero. This is not the case
for an infinite support: at any time there is a finite probability that an η > ηmax will appear,
as, strictly speaking, ηmax = ∞. The average time required for a large η to appear scales as
τ(η) ∼ 1/p(η) ∼ eη, indicating that ηmax scales as ηmax ∼ ln(t), and Σiηiki(t) ≤ D ln(t)t.
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Fig. 2 – (a) Connectivity distribution in the fitness model, obtained for a network with m = 2 and
N = 106 nodes and uniform fitness distribution. The upper solid line that goes along the circles
provided by the numerical simulations corresponds to the theoretical prediction (13), with γ = 2.25.
The dashed line corresponds to a simple fit P (k) ∼ k−2.255 without the logarithmic correction,
while the long-dashed curve correspond to P (k) ∼ k−3, as predicted by the scale-free model [8], in
which all fitnesses are equal. Inset: The dependence of the dynamic exponent β(η) on the fitness
parameter η in the case of a uniform ρ(η) distribution. The squares were obtained from the numerical
simulations while the solid line corresponds to the analytical prediction β(η) = η/1.255. (b) Same as
(a) but for exponential fitness distribution. To decrease statistical fluctuations we show the cumulative
distribution P (x > k) [13], which follows a stretched exponential. The inset shows ξ(η) as determined
form fig. 1b using eq. (14) and demonstrate that ξ(η) is linear in η, in line with the theoretical
predictions.

Assuming that Σiηiki(t)/D ln(t)t → Dm in the t → ∞ limit, using (2) we obtain that

k(t) = k(t0)
(

ln(t)
ln(t0)

)ξ(η)

, (14)

where ξ(η) = D/η. As fig. 1b shows, we find that indeed k(t) scales as a power of ln(t), while
fig. 2b (inset) shows that the power depends linearly on η. Interestingly, numerical simulations
indicate that in this case P (k) follows a stretched exponential (fig. 2b).

Discussion – The fitness model investigated in this paper reflects the basic properties of
many real systems in which the nodes compete for links with other nodes, thus a node can
acquire links only at the expense of the other nodes. The competitive nature of the model
is guaranteed by the fact that nodes that are already in the system have to compete with
a linearly increasing number of other nodes for a link. We find that allowing for different
fitness, multiscaling emerges and the time dependence of a node’s connectivity depends on
the fitness parameter, η. This allows nodes with a higher fitness to enter the system at a
later time and overcome nodes that have been in the system for a much longer timeframe.
Our results indicate, however, that not all ρ(η) distributions will result in a power law time
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dependence and connectivity distribution. If ρ(η) decays exponentially, we find that P (k)
follows a stretched exponential and k(t) follows a complex combination of logarithmic and
power law behavior. This indicates that P (k) is not robust against changes in the functional
form of the fitness distribution: with an appropriate choice of ρ(η) one can obtain a non–
power-law distribution. As many real networks display P (k) that are best approximated
with a power law, this implies that there are some restrictions regarding the nature of the
ρ(η) distribution. For example, an exponential is clearly not appropriate. Understanding the
restrictions on the classes of ρ(η) which support a power law P (k) is a formidable challenge
for further work.
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