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Universality Classes for Interface Growth with Quenched Disorder
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We present numerical evidence for the existence of two distinct universality classes characterizing
driven interface roughening in the presence of quenched disorder. The evidence is based on the
behavior of A, the coefficient of the nonlinear term in the growth equation. Specifically, for three of
the models studied, A — oo at the depinning transition, while for the two other models, A — 0.

PACS numbers: 47.55.Mh, 68.35.Fx

The motion of a nonequilibrium interface in a disor-
dered environment has attracted much attention. Fluid
flow in a porous medium is a typical experimental real-
ization of these phenomena, but applications range from
wetting phenomena to the motion of flux lines in the pres-
ence of disorder [1]. The origin of different universality
classes is well understood for growth in which thermal (or
time-dependent) noise dominates the roughening process.
However, recently several independent studies [1-8] have
noted that quenched noise—which is independent of time
and depends only on the position of the interface—may
change the universality class, generating interfaces with
anomalously large roughness exponents.

In the typical case, a d-dimensional interface charac-
terized by a height h(z,t) moves in a (d+ 1)-dimensional
disordered medium. The randomness of the medium can
be described by a quenched noise n(z, k). In the presence
of an external driving force F', the simplest growth equa-
tion describing the zero-temperature dynamics of the in-
terface is [2]

Oth = F +vV3h +n(z, k). (1)
The vV?h term mimics a surface tension and acts to
smooth the interface, while the quenched noise 7(z, h)
works to roughen the interface. It is generally assumed
that the quenched noise has zero mean and is uncorre-
lated.

An interface characterized by (1) moves with a finite
velocity vg if the driving force exceeds a critical value F,
while for F < F_ it is pinned by the disorder. When
F — F,, one finds

Vo ~ f 97 (2)
where f = (F — F.)/F, is the reduced force and 6 is the
velocity exponent.

Recently, a number of analytical [2] and numerical
[3-7] studies focused on understanding the nature of
the depinning transition and obtaining accurate esti-
mates for the critical exponents. Renormalization group
(RG) studies [2] of Eq. (1) find a roughness exponent
a = (4 — d)/3, but a number of numerical models [3-7]
revealed exponents whose values can be quite different
from the RG predictions. Wetting fluid invasion models
gave a ~ 0.8 for 1+ 1 dimension, and investigation of the
random field Ising model (RFIM) in 2+ 1 dimension gave
a =~ 0.67 [3]. Solid-on-solid type models gave o ~ 0.63
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for 1 + 1 dimension, and a ~ 0.48 for 2 + 1 dimension
[4,5], while a discretized solid-on-solid model of Eq. (1)
gave o ~ 1.25 for 14 1 dimension, and a ~ 0.75 for 2+ 1
dimension [7]. A similar scattering is found for the val-
ues of the other exponents characterizing the depinning
transition (F = F.).

Here we report simulations of five distinct models that
have been introduced to investigate the motion of an in-
terface in the presence of quenched disorder [3-7]. Our
findings suggest the existence of two different universal-
ity classes. One universality class is described by the
nonlinear growth equation [9]

O¢th = F 4+ vV2h 4+ A(Vh)? + n(z, h), (3)
and we find that for models in this universality class
A~ fTe (4)
The second universality class is described, at the depin-
ning transition, by (1). We propose that the existence of
the two universality classes is the origin of the system-
atic differences between the exponents predicted by RG
calculations and estimates from numerical simulations.
We find that measuring A can give information about
the universality classes to which a given growth process
belongs.

To calculate A, we follow Ref. [10] and impose a “tilt”
of slope m on the interface. For a (1+1)-dimensional sys-
tem, we consider a lattice with L columns, and “build in”
the tilt by implementing helicoidal boundary conditions,
h(0,t) = h(L,t)— Lm and h(L+1,t) = h(1,t)+ Lm. For
a (2 + 1)-dimensional system, we use the same boundary
conditions, so the tilt occurs only in one direction.

For a model described by Eq. (1), the local velocity v
is independent of the tilt. However, if a nonlinear term
is present in addition to the linear term, then from (3) it
follows that [10]

v = v + Am?. (5)
Thus by varying the tilt m, we can test for the presence
of nonlinear terms in the growth equation and calculate
the coefficient \.

First, we treat the model introduced in Ref. [4], for
which it was shown, in 1+ 1 dimension, that the interface
at F. is pinned by a directed percolation (DP) cluster
[4,5], and that the critical dynamics are controlled by
a divergent correlation length parallel to the interface
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& ~ f~¥1 with vy ~ 1.73. This model, referred to as
“DP-1,” excludes overhangs, and gives rise to a self-affine
interface at the depinning transition, with a roughness
exponent a ~ 0.63 [11].

In the DP-1 model, in 1 + 1 dimension, we start from
a horizontal interface at the bottom edge of a lattice of
size L. At every site of the lattice we define a random,
uncorrelated quenched variable, the noise 7, with magni-
tude in the range [0, 1]. During the time evolution of the
interface, we choose one of the L columns at random. If
the difference in height to the lowest neighbor is larger
than (+1), this lowest neighboring column grows by one
unit. Otherwise, the chosen column grows one unit pro-
vided the noise on the site above the interface is smaller
than the driving force F. The unit time is defined to be
L growth attempts.

We measure the velocity of the interface for different
reduced forces f and different tilts m. The results for
1+ 1 dimension are shown in Fig. 1(a). For a fixed force
f, we find that the interface velocity changes with the tilt
m, indicating the existence of nonlinear terms. Near the
depinning transition (f — 0), the velocity curves become
“steeper” and from (5), we infer that A must increase.
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FIG. 1. Dependence on the tilt m of the average velocity,
(a) in the DP-1 model and (b) in the RFIM. Data for different
forces f are indicated by different symbols, ranging from 0.016
(bottom curve) to 0.350 (top curve) for the DP-1 model, and
from 0.014 (bottom curve) to 0.143 (top curve) for the RFIM.
In (a) we show velocities, for the DP-1 model, for a system of
size 512 in 141 dimension. In (b) are plotted the velocities for
the RFIM in the SA regime (A = 3), for a (2+1)-dimensional
system of size 40 x 40.

To measure A, we first attempt to fit a parabola with
the tilt-dependent velocities in the vicinity of zero tilt.
The calculations indicate that as we approach the depin-
ning transition, A diverges according to Eq. (4). How-
ever, in the vicinity of F,, the velocity curves lose their
parabolic shape for large tilts [see Figs. 1(a) and 2], in-
dicating the presence of other terms not included in (5).

We can understand the breakdown of (5) for large m
using scaling arguments. Substituting Egs. (2) and (4)
into (5), we find

v(m, f) o« f& + af~¢m?. (6)
Equation (6) indicates that the velocity curves corre-
sponding to two different forces f; and fa, with f1 > fa,
will intersect at a tilt my (see Fig. 2). For tilts greater
than my, v(m, f1) < v(m, f2), a clearly unphysical pre-
diction; the average velocity, for the same tilt, should be
larger for the larger force. Thus the velocity cannot fol-
low a parabola for arbitrarily large m, and a crossover to
a different behavior than that of Eq. (6) must occur for
values of the tilt larger than my.

Letting fi — fo — 0, we find from (6) that the crossing
point of the two corresponding parabolas scales as

m2 ~ f09. (7

Equations (6) and (7) motivate the scaling form for the
velocities

v(m, f) ~ fPg(m?/f7*?), (8)
where g(z) ~ const for z < 1, and g(z) ~ z%6+9)
for z > 1 [12]. Figure 3(a) shows the data collapse we
obtain using (8), and the results of Fig. 1(a) rescaled
with exponents 6 = 0.64 +0.08, ¢ = 0.64+0.08 for 1 +1
dimension [13].

The scaling behavior (8) is not limited to the DP-1
model in 1+ 1 dimension, for 2+ 1 dimension and for the
models introduced in Refs. [5,6] we find a very similar
behavior. We refer to these models as “DP-2” (5] and

v(m, f)

FIG. 2. Here we exemplify the “noncrossing” effect on the
velocity parabolas. We show a perfect parabolic behavior for
two different forces, fi > f2 (dashed lines) as predicted by
Eq. (5). Also shown is the “curving back” of the velocity
curve for the smaller force f2 (solid line) in order not to cross
the velocity curve for f;.
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FIG. 3. Data collapse according to (8), using the same sym-
bols for the velocities shown in Fig. 1. In (a) we present the
rescaled results for the DP-1 model in 1 4+ 1 dimension and
in (b) the rescaling of the (2 + 1)-dimensional results for the
RFIM, in the SA regime (A = 3.0).

“DP-3” [6]. We simulated them in 1 + 1 dimension, and
were able to rescale the velocities according to (8) using
the exponents presented in Table I [14].

Another model we studied was the RFIM, which allows
for overhangs; and for certain values of its parameters can
be mapped to percolation [3]. In the RFIM, spins on a
square lattice interact through the Hamiltonian

H=- 88— Y [F+u(i,h)Si, 9

(1,3) i

where S; = +1, F now denotes the external magnetic
field, and 7 is the time-independent local random field
(i.e., quenched noise) whose values are uniformly dis-
tributed in the interval [—A,A]. The strength of the
quenched disorder is characterized by the parameter A.
At time zero, all spins are “down”—except those in the
first row, which are initially up. During the time evo-
lution of the system, we flip any down spin that is “un-
stable,” i.e., whenever the flip will lower the total energy
of the system. The control parameter of the depinning
transition is the external magnetic field F'; the unit time
corresponds to flipping all unstable spins [15].

For dimension 1+ 1, there are two morphologically dif-
ferent regimes, depending on the strength A of the disor-
der (i.e., of the random fields). For A > 1.0, the interface
is self-similar (SS), while for A < 1.0 it is faceted (FA).
For dimension 2+1, there is again a FA regime (A < 2.4),
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TABLE I. Exponents for the five studied models (see defi-
nitions in the text). A negative value of ¢ means that A — 0
when f — 0. We argue in the text that the models above the
horizontal line (DP-1, DP-2, and DP-3) belong to the univer-
sality class of Eq. (3) and can be mapped, in 1+ 1 dimension,
to DP. The models below the line belong to the universality
class of Eq. (1). See [14] for a discussion on the values of the
exponents for the DP-2 model.

Model 1 4+ 1 dimension 2 + 1 dimension
0 ¢ 4 ¢

DP-1 0.64 £0.08 0.64+0.08 0.80+0.12 0.30£0.12
DP-2 0.59 +0.12 0.55+0.12
DP-3 0.70+£0.12 0.65+0.12
RFIM SA 0.60 £0.11 —-0.70 £ 0.11

SS 0.31 +£0.08 —0.65£0.13
SOSs-1 0.26 £ 0.07

a SS regime (A > 3.4), and also a self-affine (SA) regime
in between (2.4 < A < 3.4) [3]. The SA regime, which
exists only for 2 + 1 dimension, is the only regime of the
RFIM for which either Eq. (1) or (3) could apply. In the
SS regime, the interface is not single valued, while in the
FA regime, lattice effects dominate the growth.

Our results show that, for the FA regime, the RFIM
behaves in a similar fashion to the other three models,
in that the coefficient of the nonlinear term diverges at
the depinning transition. However, although (8) is still
valid for the SA and SS regimes, we find a negative ¢,
thus A — 0. This behavior can be understood, for the
SS regime, by considering that near the depinning tran-
sition the morphology of the interface corresponds to the
hull of a percolation cluster, which has no well-defined
orientation [3]. Thus a change in the boundary condi-
tions will not affect the growth process, and we cannot
expect any divergence of a possible nonlinear term when
the magnetic field approaches its critical value. On the
other hand, for large fields, the effect of the quenched
disorder diminishes, and we can observe an average in-
terface orientation. For such values of field, we expect
the presence of nonlinear terms to be felt. Although for
the SA regime the behavior of X is similar [see Figs. 1(b)
and 3(b)], the reasons so far cannot be understood.

These results lead us to conclude that in the SA regime
the RFIM belongs to the universality class of Eq. (1).
This conclusion is further supported by the agreement
between the numerically determined exponents, a >~ 0.67
and 6 ~ 0.60 for 2+1 dimension, and the RG predictions,
a=60=2/3[2.

Finally we studied the discretized solid-on-solid version
of Eq. (1), referred to as “SOS-1” [7], and find that for
any reduced force, A = 0.

The results of Table I show, for 1 + 1 dimension, a
separation into two groups in the values of the critical
exponents for the five models studied [14]. In the follow-
ing we argue that this separation reflects the existence
of two distinct universality classes, described by the two
continuum growth equations, (1) and (3). For the SOS-1
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model and for the RFIM, in the SA regime, we find that
A either is zero or goes to zero at the depinning transi-
tion. Thus the scaling behavior of these models should
be correctly described by (1). For the DP-1, DP-2, and
DP-3 models we observe a divergent )\, indicating that
nonlinearities are relevant near the depinning transition.
Thus to properly describe the scaling properties of these
models it is necessary to study (3), since (1) does not
include the nonlinear term A(Vh)2. Further evidence
of the existence of the two universality classes is given
by the values of roughness exponents. The models for
which A diverges at the depinning transition [4-6], pre-
dict o ~ 0.63, in agreement with the mapping to DP [16].
On the other hand, models in the universality class of
Eq. (1) [3,7], gave roughness exponents typically larger,
in better agreement with the RG predictions [2].

Finally, we propose the study of the behavior of A at
the depinning transition as a general method for iden-
tifying the universality class of a given growth process
in disordered media. This method has been successfully
applied to the motion of an elastic string in a random
medium, suggesting that the nonlinear term might be
generated by the anisotropy in the disorder [17].
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