
OFFPRINT

Burstiness and memory in complex systems

K.-I. Goh and A.-L. Barabási

EPL, 81 (2008) 48002

Please visit the new website
www.epljournal.org



February 2008

EPL, 81 (2008) 48002 www.epljournal.org

doi: 10.1209/0295-5075/81/48002

Burstiness and memory in complex systems

K.-I. Goh1,2 and A.-L. Barabási1,3

1 Center for Complex Network Research and Department of Physics, University of Notre Dame

Notre Dame, IN 46556, USA
2Department of Physics, Korea University - Seoul 136-713, Korea
3Department of Physics, Biology, and Computer Science, Northeastern University - Boston, MA 02115, USA

received 9 September 2007; accepted in final form 13 December 2007
published online 17 January 2008

PACS 89.75.-k – Complex systems
PACS 05.45.Tp – Time series analysis

Abstract – The dynamics of a wide range of real systems, from email patterns to earthquakes,
display a bursty, intermittent nature, characterized by short timeframes of intense activity followed
by long times of no or reduced activity. The understanding of the origin of such bursty patterns
is hindered by the lack of tools to compare different systems using a common framework. Here we
propose to characterize the bursty nature of real signals using orthogonal measures quantifying
two distinct mechanisms leading to burstiness: the interevent time distribution and the memory.
We find that while the burstiness of natural phenomena is rooted in both the interevent time
distribution and memory, for human dynamics memory is weak, and the bursty character is due
to the changes in the interevent time distribution. Finally, we show that current models lack in
their ability to reproduce the activity pattern observed in real systems, opening up avenues for
future work.

Copyright c© EPLA, 2008

The dynamics of most complex systems is driven by the
loosely coordinated activity of a large number of compo-
nents, such as individuals in the society or molecules in
the cell. While we witnessed much progress in the study of
the networks behind these systems [1–4], advances towards
understanding the system’s dynamics have been slower.
With increasing potential to monitor the time-resolved
activity of most components of selected complex systems,
such as time-resolved email [5–7], web browsing [8], and
gene expression [9,10] patterns, we have the opportunity
to ask an important question: is the dynamics of complex
systems governed by generic organizing principles, or each
system has its own distinct dynamical features? While it
is difficult to offer a definite answer to this question, a
common feature across many systems is increasingly docu-
mented: the burstiness of the system’s activity patterns.
Bursts, vaguely corresponding to significantly enhanced

activity levels over short periods of time followed by long
periods of inactivity, have been observed in a wide range
of systems, from email patterns [6] to earthquakes [11,12]
and gene expression [9]. Yet, often a burstiness is more
of a metaphor than a quantitative feature, and opinions
about its origin diverge. In human dynamics, burstiness
has been reduced to the fat-tailed nature of the response
time distribution [6,7], in contrast with earthquakes and

weather patterns, where memory effects appear to play a
key role as well [13,14]. Once present, burstiness can affect
the spreading of viruses [15] or resource allocation [16,17].
Also, deviations towards a regular, “anti-bursty” behavior
in heartbeat indicate disease progression [18]. Given the
diversity of systems in which it emerges, there is a need to
place burstiness on a firmer quantitative basis. Our goal in
this letter is to make a step in this direction, by developing
a diagnosis tool that can help quantify the magnitude and
potential origin of the bursty patterns seen in different
real systems. Such a tool may also lend insights into the
analysis of fractal and self-similar bursty signals [19].
Let us consider a system whose components have a

measurable activity pattern that can be mapped into
a discrete signal, recording the moments when some
events take place, like an email being sent, or a protein
being translated1. The activity pattern is random (Poisson
process) if the probability of an event is time-independent.
In this case the interevent time, τ , between two con-
secutive events follows an exponential distribution,
PP(τ)∼ exp(−τ/τ0) (fig. 1a). An apparently bursty
1For systems with continuous signal, we may adopt a threshold

method to transform it into a discrete one, and in many systems
the statistical properties of the obtained signal are known to be
threshold-independent [12,13].
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Fig. 1: (a) A signal generated by a Poisson process with a
unit rate (B =−0.05, M = 0.02; see text for the definitions
of B and M parameters). (b,c) Bursty character through
the interevent time distribution: A bursty signal (B = 0.44,
M =−0.04) generated by the power law interevent time distri-
bution P (τ)∼ τ−1 (b), and an anti-bursty signal (B =−0.81,
M =−0.02) generated by the Gaussian interevent time distri-
bution with m= 1 and σ= 0.1 (c). A bursty-looking signal
can emerge through memory as well. For example, the
bursty-looking signal shown in (d) (M = 0.90) is obtained by
shuffling the Poisson signal of (a) to increase the memory effect.
A more regular looking signal, with negative memory, is
obtained by the same shuffling procedure (e) (M =−0.74).
Note that signals in (a), (d) and (e) have identical interevent
time distribution, thus the same B-value.

(or anti-bursty) signal emerges if P (τ) is different from
the exponential, such as the bursty pattern of fig. 1b, or
the more regular pattern of fig. 1c. Yet, the change in
the interevent time distribution is not the only way to
generate a bursty signal. For example, the signals shown
in fig. 1d,e have exactly the same P (τ) as in fig. 1a, yet
they have a more bursty or a more regular character.
This is achieved by introducing memory: in fig. 1d the
short interevent times tend to follow short ones, resulting
in a bursty look. In fig. 1e the relative regularity is due to
the memory effect acting in the opposite direction: short
(long) interevent times tend to be followed by long (short)
ones. Therefore, the apparent burstiness of a signal can
be rooted in two mechanistically different deviations from
a Poisson process: changes in the interevent time distrib-
ution or memory. To distinguish these orthogonal effects,
we consider two measures, the burstiness parameter B
based on the interevent time distribution and the memory
parameter M based on the interevent time correlations,
that quantify the degree of each effect in real signals.

Distribution-based measure. – We may character-
ize the deviation from the Poisson signal in several ways.
Perhaps the simplest measure in the literature would be
the so-called coefficient of variation, defined as the ratio
of the standard deviation to the mean, στ/mτ , where mτ
and στ are the mean and the standard deviation of P (τ),
respectively. It has a value 1 for a Poisson signal with the
exponential P (τ), 0 for completely regular δ function-like
P (τ), and ∞ for signals with a heavy-tailed P (τ) with
infinite variance. Higher moments of the distribution such
as skewness or kurtosis, or a more complicated measure
based on the area between P (τ) and the exponential or
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Fig. 2: The burstiness parameter B for (a) the stretched
exponential and (b) log-normal interevent time distributions.
Both distributions interpolate between a highly bursty (B = 1),
neutral (B = 0), and a regular (B =−1) signal. Insets show
the form of P (τ) in bursty and anti-bursty regime of each
distribution along with a typical time signal generated with
the corresponding P (τ). The dashed line in the insets refers
the exponential distribution for the Poisson process.

that between its cumulative functions may also be used
for this purpose. Here we use the coefficient of variation
to define a burstiness parameter B as

B ≡ (στ/mτ − 1)
(στ/mτ +1)

=
(στ −mτ )
(στ +mτ )

. (1)

This definition is meaningful when both the mean and
the standard deviation of P (τ) exist, which is always
the case for real-world finite signals. When meaningful,
B has a value in the bounded range (−1, 1), and its
magnitude correlates with the signal’s burstiness: B = 1
is the most bursty signal, B = 0 is neutral, and B =−1
corresponds to a completely regular (periodic) signal. For
example, in fig. 2a we show B for the stretched exponential
distribution,

PSE(τ) = u(τ/τ0)
u−1 exp[−(τ/τ0)u]/τ0 , (2)

often used to approximate the interevent time distribu-
tions of complex systems [20]. Here the smaller the para-
meter u is, the burstier is the signal, and for u→ 0, PSE(τ)
follows a power law with the exponent−1, for whichB = 1.
For u= 1, PSE(τ) is simply the exponential distribution
with B = 0. Finally, for u> 1, the larger u is, the more
regular is the signal, and for u→∞, P (τ) converges to a
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Fig. 3: Interevent time distributions P (τ) for some real signals. (a) P (τ) for the email activity of individuals from a University [4].
τ corresponds to the time interval between two emails sent by the same user. (b) P (τ) for the occurrence of a letter in the text
of C. Dickens’ David Copperfield [25]. Here τ corresponds to the number of letters between two consecutive occurrences of the
same alphabet letter. (c) P (τ) of the cardiac rhythm of individuals [30]. Each event corresponds to the beat in the heartbeat
signal and τ is the time interval between two consecutive heartbeats for an individual. In each panel, we also show for reference
the exponential interevent time distribution (dotted). Unscaled interevent time distributions are shown in the inset for each
dataset.

Dirac delta function with B =−1. We also show in fig. 2b
the behavior of B for the log-normal distribution,

PLN(τ) =
1

τs
√
2π
exp

(

− [ln(τ)−µ]
2

2s2

)

, (3)

also frequently used for the statistics of complex
systems [21,22]. Here the larger the parameter s is,
the larger is the variance of P (τ) hence the signal gets
burstier (B→ 1). The smaller s is, the more regular is
the signal, and B approaches to −1 as s→ 0. We note
however that even though B becomes zero for a specific
value s∗ (fig. 2b), P (τ) does not become an exponential
there, which is a caveat of the present measure.
Most complex systems display a remarkable heterogene-

ity: some components may be very active, and others
much less so. For example, some users may send dozens
of emails during a day, while others only one or two. To
combine the activity levels of so different components, we
can group the signals based on their average activity level,
and measure P (τ) only for components with similar activ-
ity level. As the insets in fig. 3 show, the obtained curves
are systematically shifted. If we plot, however, τ0P (τ)
as a function of τ/τ0, where τ0 is the average interevent
time, the data collapse into a single curve F(x) (fig. 3),
indicating that the interevent time distribution follows
P (τ) = (1/τ0)F(τ/τ0), where F(x) is independent of the
average activity level of the component, and represents a
universal characteristic of the particular system [12,23,24].
This raises an important question: will B depend on τ0?
The burstiness parameter B is indeed invariant under
the time rescaling as τ̃ ≡ τ/τ0 and P̃ (τ̃)≡ τ0P (τ) with a
constant τ0. Such an invariance enables us to assign to each

system a characteristic burstiness parameter, despite the
different activity level of its components. The scaling in
fig. 3 could be a starting point of further theoretical work,
aiming to answer how generic it is and what is the mecha-
nism behind it. Currently, we have only partial answer to
these questions for specific systems [23].

Correlation-based measure. – The way we can char-
acterize the correlation properties of a signal is not unique
either. The joint probability distribution parameterized by
a time lag k, P (τ, τ ′; k), defined as the probability density
that we have two interevent times τ and τ ′ separated by
k events, contains the most information about the two-
point correlation properties. The autocorrelation function
C(k) = 〈(τi−mτ )(τi+k −mτ )〉/σ2τ , where 〈·〉 means the
average over the index i, is also widely used in many appli-
cations. A simple measure is offered by the correlation
coefficient of consecutive interevent time values (τi, τi+1),
defining the memory coefficient M as

M ≡ 1

nτ − 1

nτ−1
∑

i=1

(τi−m1)(τi+1−m2)
σ1σ2

, (4)

where nτ is the number of interevent times measured
from the signal and m1(m2) and σ1(σ2) are sample
mean and sample standard deviation of τi’s (τi+1’s),
respectively (i= 1, . . . , nτ − 1). Note that M is a biased
estimator for C(k= 1), which is more appropriate
for real-world finite signals, particularly if there are
possible long-range correlations in the system. With
this definition, the memory coefficient has a value in
the range (−1, 1) and is positive when a short (long)
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Fig. 4: (Color online) (a) The (M,B) phase diagram. Human activities (red) are captured by activity patterns pertaining to
email (⋆) [5], library loans (◦) [7], and printing (�) [28] of individuals in Universities, call center record at an anonymous bank
(�) [29], and phone initiation record from a mobile phone company (⋄). Data for natural phenomena (black) are earthquake
records in Japan (•) [26] and daily precipitation records in New Mexico, USA (�) [27]. Data for written texts (blue) [25] are
the English text of David Copperfield (△) and the Hungarian text of Isten Rabjai by Gárdonyi Géza (▽). Data for physiological
behaviors (green) are the normal sinus rhythm (�) and the cardiac rhythm with CHF (�) of human subjects [30]. The dark-grey
area is the region occupied by the 2-state model [34]. (b) Close-up of the most populated region (light-grey region in (a)). Data
in each class are indicated by grouping with the respective dimmer color for the eye.

interevent time tends to be followed by a short (long)
one, and it is negative when a short (long) interevent
time is likely to be followed by a long (short) one. For
example, the synthetic signals shown in figs. 1(a,d,e)
with identical P (τ) have the memory coefficient
M = 0.02 (neutral; a), M = 0.90 (positive memory; d)
and M =−0.74 (negative memory; e), respectively.

Mapping complex systems on the (M,B)-space. –
Given that the burstiness of a signal can have two qualita-
tively different origins, it is desirable to characterize real-
world complex systems by quantifying both effects, using
the corresponding B and M parameters to place them
in a (M,B)-space (fig. 4). As a first example, we measured
the spacing between the consecutive occurrences of the
same letter in written texts of different kind, era, and
language [25]. For these signals, we find B ≈ 0, i.e., the
interevent time distribution follows closely an exponential
(fig. 3b) and M ≈ 0.01, indicating the lack of short-term
memory. Thus, this signal is at the origin of the phase
diagram (fig. 4). In contrast, natural phenomena, like
earthquakes [26] and weather patterns [27] are in the vicin-
ity of the diagonal, indicating that P (τ) and memory
equally contribute to their bursty character. The situation
is quite different, however, for human activities, ranging
from email and phone communication to web browsing
and library visitation patterns [5,7,8,28,29]. For these we
find a high B and small or negligible M , indicating that
while these systems display significant burstiness rooted in
P (τ), memory plays a small role in their temporal inho-
mogeneity. This lack of memory is quite unexpected, as
it suggests the lack of predictability in these systems in
contrast with natural phenomena, where strong memory

effects could lead to predictive tools. Finally, for cardiac
rhythms describing the time interval between two consec-
utive heartbeats (fig. 3c) [30], we find Bhealthy =−0.69(6)
for healthy individuals and BCHF =−0.8(1) for patients
with congestive heart failure (CHF), both signals being
highly regular. Thus the B parameter captures the fact
that cardiac rhythm is more regular with CHF than in
the healthy condition [18]. Furthermore, we findM ≈ 0.97,
indicating that memory also plays an important role in the
signal’s regularity.
The discriminative nature of the (M,B) phase diagram

is illustrated by the clustering of the different systems in
the plane: human-activity patterns locate themselves in
the high-B, low-M region, natural phenomena near the
diagonal, heartbeats in the high-M , negative-B region and
texts near the origin, suggesting the existence of distinct
classes of dynamical mechanisms driving the temporal
activity in these systems. It will also be interesting to
study how chaotic (real or model-generated) signals are
placed in the (M,B)-plane, and whether there exist clear
boundaries in the phase diagram separating systems into
distinct classes.

Discussion. – Following the clustering of the empirical
measurements in the phase diagram, a natural question
emerges: to what degree can current models reproduce
the observed quantitative features of bursty processes?
Queueing models, proposed to capture human-activity
patterns, are designed to capture the waiting times of the
tasks, rather than interevent times [6,7,31–33]. Therefore,
placing them on the phase diagram is not meaningful. A
bursty signal can be generated by the 2-state model [34].
The 2-state model is a probabilistic automaton with
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two internal states q0 and q1, in each of which the
system performs a Poisson process with rates λ0 and
λ1, respectively. Each time the system switches its state
(changes λ) with probability p, or remains in its current
state with probability (1− p). Thus the system alternates
between two Poisson processes randomly, generating a
bursty signal when λ0 
= λ1. The B and M parameters for
the 2-state model can be calculated analytically [35]. The
region in the (M,B)-space occupied by the 2-state model
with different λ rates and switching probability p is shown
as the dark-grey area in fig. 4a, suggesting that the model
could account for some of the observed behaviors by
tuning its parameters. Yet, the agreement is misleading:
for example, P (τ) of real bursty systems is often skewed
and fat-tailed, which is not the case for the 2-state model
for which we have the sum of two exponentials. This
indicates that B and M parameters offer only a first-
order discrimination for the origin of the burstiness. More
sophisticated measures are needed to improve the compar-
ison between models and real systems by, e.g., using the
full functional form of P (τ) and the autocorrelation
function, or by developing measures to capture long-term
correlations and non-linear effects present in real systems,
such as those exhibiting self-organized criticality or
chaotic behavior [36,37]. These topics deserve further
investigation. This discrepancy also indicates the lack of
satisfactory modeling tools to capture the detailed mech-
anisms responsible for the bursty activities seen in real
complex systems, opening up possibilities for future work.
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