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Our enhanced ability to map the structure of various complex
networks is increasingly accompanied by the possibility of inde-
pendently identifying the functional characteristics of each node.
Although this led to the observation that nodes with similar
characteristics have a tendency to link to each other, in general we
lack the tools to quantify the interplay between node properties
and the structure of the underlying network. Here we show that
when nodes in a network belong to two distinct classes, two
independent parameters are needed to capture the detailed inter-
play between the network structure and node properties. We find
that the network structure significantly limits the values of these
parameters, requiring a phase diagram to uniquely characterize the
configurations available to the system. The phase diagram shows
a remarkable independence from the network size, a finding that,
together with a proposed heuristic algorithm, allows us to deter-
mine its shape even for large networks. To test the usefulness of
the developed methods, we apply them to biological and socio-
economic systems, finding that protein functions and mobile
phone usage occupy distinct regions of the phase diagram, indi-
cating that the proposed parameters have a strong discriminating
power.

assortativity � complexity � dyadic effect � graph bipartition

The pervasiveness of networked systems in biology, technol-
ogy, and society (1–7) has led to a recent surge of interest in

uncovering the organizing principles that govern the topology
and the dynamics of various complex networks. Advances in this
direction have typically focused on characterizing the topological
maps that depict how the system’s components connect to each
other. In many real systems of scientific interest, however, the
nodes themselves possess characteristics that carry important
information about their role in the system. In a social network,
for example, each individual can be assigned gender, race, and
parameters that represent his or her preference for products or
services; in a protein–protein interaction network, each protein
is characterized by its biological functions (8, 9); web pages in the
World Wide Web can be categorized based on their content
(10–12). Often, the various node properties are not distributed
at random in the network, but are correlated with the underlying
network structure. At least two mechanisms may be responsible
for such correlations: the placement of new links could be driven
by node characteristics (people with similar interests becoming
friends), or the node characteristics could be influenced by the
links the node has (purchasing services used by our friends).
Whatever the mechanism, there is empirical evidence that in
many networks adjacent nodes show significant correlations in
their properties, a phenomenon often called ‘‘assortative mix-
ing’’ (13). For example, children of the same race are more likely
to become friends in school (14, 15); weblogs (or ‘‘blogs’’) on
political issues contain more hyperlinks to blogs of similar
political leanings (16); proteins with similar functions have a
higher chance to connect to each other (17). Consequently, in
many systems, the number of links between nodes sharing a
common property is larger than expected if the characteristics

were distributed randomly on the network (18–22), a phenom-
enon called the dyadic effect.

The evidence for dyadic effect raises several fundamental
questions: How many parameters are necessary to mathemati-
cally describe the statistical distribution of node characteristics
in a network? Are there effects beyond dyadic; i.e., are two
different configurations of node characteristics equivalent if they
show the same dyadic effect? With the increasing recognition of
the interplay between network structure and node characteristics
(11–17, 23) helped by the ever-developing data collection abil-
ities, these questions are becoming of great practical signifi-
cance, answers to which could assist in a better understanding of
complex systems.

Theory
Dyads and Dyad Counts. Assume that we are provided with a
network with known node characteristics, and we wish to
determine to what degree they correlate with the network
structure. Consider the case where each node is characterized by
a property that can take only two values, 1 or 0, for simplicity.
For example, the property could capture if a molecule contrib-
utes to a specific function in the cell (1) or does not (0), or if a
person belongs to a certain social group (1) or does not (0). Let
us call n1 (n0) the number of nodes with property 1 (0) so that
the total number of nodes N satisfies N � n1 � n0. This allows
for three kinds of dyads (defined as a link and its two end nodes)
in the network: (1 � 1), (1 � 0), and (0 � 0) (Fig. 1a). We label
the number of each dyad type m11, m10, m00, respectively,
satisfying M � m11 � m10 � m00, where M is the total number
of links in the network. Without loss of generality we choose m11
and m10 as independent parameters, representing the dyads
containing nodes with property 1.

If property 1 is distributed randomly among the N nodes, i.e.,
if any node has an equal chance of possessing it, the expected
values of m11 and m10 are (18, 24)

m11 � �n1

2 � � p �
n1�n1 � 1�

2
p, [1a]

m10 � �n1

1 � �n0

1 � � p � n1 �N � n1�p, [1b]

where p � 2M/N(N � 1) is the connectance, representing the
average probability that two nodes are connected. Statistically
significant deviations of m11 and m10 from their expected values
m� 11 and m� 10 imply that property 1 is not distributed randomly.
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We quantify the magnitude of such effects via dyadicity D and
heterophilicity H defined as

D �
m11

m11
and H �

m10

m10
. [2]

We call property 1 to be dyadic if D � 1 (antidyadic if D � 1),
indicating that the nodes with property 1 tend to connect more
(less) densely among themselves than expected for a random
configuration. Similarly we define property 1 to be heterophilic
if H � 1 (heterophobic if H � 1), meaning that the nodes with
property 1 have more (fewer) connections to nodes with prop-
erty 0 than expected randomly. Note that Dp is the connection
probability between a (1–1) node pair, whereas Hp is that
between a (1–0) node pair.

To understand the significance of D and H, we must first
realize that m11 and m10 cannot assume arbitrary values. For
example, m11 can never be larger than min(M, (2

n1)), and m10

cannot exceed min(M, n1n0). Yet, there are subtler constraints
determined by the interplay between network structure and n1.
We illustrate this by using a network of n � 25 nodes and m �
32 links in Fig. 1b. In Fig. 1 c and d, we present the phase
diagrams characterizing the distribution of an arbitrary property
on the network when n1 � 10 (Fig. 1c) and n1 � 5 (Fig. 1d). The
left and bottom axes show m11 and m10, whereas the right and the
upper axes show the corresponding D and H calculated from Eq.
1. The darkness of each square represents the ‘‘degeneracy,’’ i.e.,
the number of ways of placing n1 nodes on the network while

maintaining (m11, m10). An open square means that there is no
configuration consistent with (m11, m10), indicating that not all
(D, H) configurations are available for the network. As shown by
the difference in the shapes of the phase diagrams in Fig. 1 c and
d, the available configurations are highly dependent on n1. The
dotted lines m11 � m� 11 (D � 1) and the m10 � m� 10 (H � 1)
intersect at the random expectation (m� 11, m� 10).

The phase diagrams (Fig. 1 c and d) are helpful in illustrating
the properties of node groups showing various values of D and
H. We first observe that a random distribution of a property (D �
H � 1, Fig. 1b) represents a region of high degeneracy point in
the phase diagram, i.e., the most ‘‘typical’’ of all configurations.
Atypical configurations, such as those shown in Fig. 1 e–h, are
visibly different from the random configuration: in a dyadic
configuration (D �� 1, Fig. 1e), black nodes are pushed into the
highly interlinked central clusters of the network to maximize
m11, whereas in an antidyadic configuration (D �� 1, Fig. 1f ), the
black nodes tend to avoid linking to one another; in a hetero-
phobic configuration (H �� 1, Fig. 1g), the black nodes are
pushed into the periphery to avoid contact with white nodes and
minimize m10, whereas in a heterophilic configuration (H �� 1,
Fig. 1h), the black nodes occupy the hubs so that contact with
white nodes is maximized.

Phase Diagrams for Large Networks. For sufficiently small networks
(Fig. 1b), the phase diagram can be obtained via an exhaustive
enumeration of each way in which the n1 black nodes can be placed
on the network. This task becomes infeasible for large networks,
because the number of possible configurations (n1

N) increases expo-
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Fig. 1. Definitions and examples. (a) When nodes of a network can be classified into two classes, with labels 1 and 0 (shown as black and white, respectively),
we have three types of dyads, as shown in the figure. The number of each dyad {m11, m10, m00} satisfies M � m11 � m10 � m00, where M is the total number of
links in the network. (b) A network of N � 25 nodes and M � 32 links, on which n1 � 10 black nodes are distributed randomly. The complete phase diagram of
possible values of (m11, m10) for n1 � 10 (c) and for n1 � 5 (d). (e–h) Configurations of four extreme points indicated on the phase diagram (c) for n1 � 10.
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nentially with N. However, we can try to find only the boundary of
the phase diagram through optimizing (i.e., maximizing and min-
imizing) m10 given m11 (or vice versa). This task maps into graph
bipartition, which is an NP-complete problem (25, 26). We can
speed up the process by using the Mattheyses and Fiduccia heuristic
with O(M) running time for a single optimization run (27) [see
supporting information (SI) Text, SI Fig. 4].

This procedure allows us to ask an important question: does
the boundary of the phase diagram depend on the network size
N, assuming that the coverage ratio a � n1/N is constant (i.e., the
fraction of nodes with property 1 is independent of N)? The
limiting case of N 3 	 is called the thermodynamic limit in
statistical physics, and it is of interest for most analytic ap-
proaches (1, 2, 28). We study networks constructed by using two
canonical models: (i) the Erdös–Rényi network, in which two
nodes are connected randomly with equal probability (29, 30),
and (ii) the scale-free network with a power-law degree distri-
bution pk 
 k�3 (31). Their D�H phase diagrams (Fig. 2) indicate
that the phase boundary is stationary, or system-size independent
(see also SI Text). Therefore, if we need to construct the phase
diagram for a prohibitively large network, we may be able to
extract a considerably smaller sample of the network (with
statistical properties sufficiently similar to those of the full
network) whose phase diagram in the D–H space should be the
same as that of the original network.

Applications to Real Networks
To demonstrate the relevance of the proposed methodology to
real systems, we study the distribution of node characteristics in
selected biological and socioeconomic systems.

Protein–Protein Interaction (PPI) Network of S. cerevisiae. The fil-
tered yeast interactome PPI network of S. cerevisiae (32) consists
of N � 1,379 proteins and M � 2,493 links, each representing an
experimentally documented interaction between two proteins
(33). The MIPS (http://mips.gsf.de) classification places each
protein into one or several of 16 functional classes, depending on
whether it does (1) or does not (0) participate in some well
characterized cellular function. The D and H parameters for each
class are shown in Fig. 3a (see also SI Table 1). We find that all
functional classes are dyadic and heterophobic, showing a highly

modular structure. In Fig. 3b, we show the phase diagram for
proteins involved in cellular communication and signal trans-
duction (functional class 30 in SI Table 1). Note that the real
configuration sits near the phase boundary, indicating that the
proteins in this class display the most heterophobic configuration
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Fig. 3. A study of node characteristics distributions on two networks. (a)
Values of the D and H parameters for proteins belonging to the main MIPS
functional classes in the protein interaction network of S. cerevisiae (circles)
and service usage in the mobile communication network (squares). Functions
and names of each class and service are given in SI Text. In b–e, we study two
node properties, one from each network (indicated by two filled shapes in a).
(b) The phase diagram for a node group of size n1 � 95 in the S. cerevisiae PPI
network, corresponding to the MIPS functional class 30, i.e., proteins involved
in cellular communications and signal transduction. The (D, H) values of this
class of proteins indicate that they are more dyadic and less heterophilic than
expected for a random configuration (filled circle), highlighting the modular
structure of the functional class. Furthermore, the proximity of the real (D, H)
to the phase boundary shows that its heterophilicity is almost as small as it can
be given its dyadicity and the network structure. (c) A portion of the S.
cerevisiae PPI network showing the MIPS class-30 proteins (filled nodes) and
their neighbor proteins. (d) The phase diagram for the mobile Chat service.
Due to the prohibitively large size of the mobile phone network, the
boundary-finding algorithm was applied on network samples (i.e., egocentric
networks of radii d � 4, d � 5, and d � 6 centered on random vertices) with
constant coverage ratio. The solid lines connect the average boundary posi-
tions. (e) A portion of the mobile network showing users of Chat (filled nodes)
and their neighbors. Unlike MIPS class-30 proteins of c, Chat users are hetero-
philic as well as dyadic, being more spread out over the network.
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given their dyadicity D. In Fig. 3d, we show a subset of the S.
cerevisiae network that contains some proteins of the MIPS
functional class 30 and its neighbors. Their dyadic and hetero-
phobic nature are visually apparent: the proteins cluster to
maximize contact between themselves (1–1 links) while mini-
mizing contact with proteins that do not belong to the group (1–0
links).

Mobile Phone Network. The mobile communication network con-
sists of N � 5 million mobile phone users and M � 10.7 million
links that represent calls (voice or text messages) between the
users over a period of 15 days (34–36). Each user can use their
handsets to access additional phone-based services such as
e-mail or a real-time instant messaging service called Chat.
Whether a person did (1) or did not (0) use a particular service
during our observation period defines his or her classification
(34) (SI Table 2).

Fig. 3a shows the D and H parameters for 27 mobile phone-
based services, indicating that they occupy a strikingly different
region of the D�H space than the functional groups in the PPI
network: phone services exhibit a strong tendency to be hetero-
philic, implying that the users of a service tend to possess a high
number of contacts with nonusers as well (see Fig. 1h).

Given the system’s extraordinary size, we could not determine
the phase diagram exactly. Thus, we rely on the system size
independence of the phase boundary, obtained earlier (Fig. 2).
We selected several nodes at random from the network, and took
their egocentric networks containing all nodes and links within
geodesic distances d � 4, 5, and 6. We then determined the phase
boundaries of the samples (Fig. 3d). Although the phase bound-
ary expands slightly as D increases, we observe a stability similar
to the one observed for the Erdös–Rényi and scale-free network
models.

Finally, placing the values of D and H for Chat in the phase
diagram (Fig. 3d), we find that the usage of Chat is more dyadic
and heterophilic than randomly expected, although not extreme
in either aspect, staying far from the boundary. This is illustrated
in Fig. 3f, representing a small portion of the network, which
indicates that Chat users are often connected to each other but
not clustered to the degree that the proteins were in Fig. 3e, given
the relatively weak heterophilic effect compared with what could
have been obtained if the real configuration were closer to the
phase boundary.

Discussion and Conclusion
Here, we explored a question of increasing importance in
network characterization: how the node properties correlate
with the underlying network topology. Four findings stand out:
(i) Dyadicity alone is not sufficient to characterize the statistical
features of a node property: two parameters, D and H, are
necessary. (ii) To understand the degree of departure of a node
characteristic distribution from random, we need the full phase
diagram. For large systems, this can be obtained by using a
heuristic algorithm for graph bipartition. (iii) We found that in
the D�H space the phase diagram is independent of the system
size N, which was put to use when we studied the service usage
patterns in a prohibitively large mobile communication network.
However, note that, for some systems, we do observe a slower
convergence of the phase diagram with increasing system size,
which we attribute to the role of the hubs (see SI Text). Thus, the
convergence of the phase diagram to a limiting shape requires
further study. (iv) The D and H parameters have strong discrim-
inating power: although mobile phone service usage and func-
tional groups of proteins in the PPI network of S. cerevisiae are
both dyadic (D � 1), they show distinctly different H, the former
being heterophilic (H � 1) and the latter heterophobic (H � 1).
This distinction between the two network types, along with the
sampling method introduced above, may also assist in the

practical applications of network theory to new classes of
problems. For example, the tools developed here may help us
gain a more detailed understanding of social segregation prob-
lems, such as the social effects present in the obesity epidemic
(23, 37).

The results presented here lay the foundations for future
theoretical studies on these problems. For example, one could
be faced with systems where a node belongs to several classes
at once (36, 38), or nodes can be divided into several classes,
not just two, as in the case explored in this paper. For the latter
case, an extension of our method requires introducing more
dyad types depending on the number of possible pairing of
node types. In general, with x distinct node types we obtain x(x
� 1)/2 dyads. As a consequence, the phase diagram will have
to be drawn in the (x � 2)(x � 1)/2-dimensional space. Note
that the methodology developed in this study generalizes into
this higher dimension as well. One may also investigate
changes in the phase diagram induced by specific network
properties such as degree assortativity or module size distri-
bution. In a degree-assortative network (39, 40), where nodes
with similar degrees are connected more densely than in a
network with no such assortativity, a group of n1 nodes can
achieve a higher D by occupying positions of similar degrees,
or a lower D by occupying positions of dissimilar degrees.
Therefore, assortativity deforms the phase boundary so that
points with larger D and smaller H values are included. In a
similar fashion, the existence of topologically distinct groups
or communities can effectively raise D and lower H. Indeed, if
a module exists whose size s is equal to n1, D can be maximal
and H minimal when all n1 nodes occupy the module. However,
if s � n1, then (n1 � s) nodes from the group are forced out
of the module and have to connect to dissimilar nodes, thereby
lowering D and raising H. On the other hand, if s � n1, the
nodes are forced to share the positions in the module with (s
� n1) dissimilar nodes, again lowering D and raising H.
Therefore, the existence of distinct modules will transform the
phase boundaries so that they include larger D and smaller H
values for n1 that coincide with the module sizes.

Lastly, we note that we have only studied unweighted
networks, ignoring the fact that in reality some links are far
stronger than others in various contexts. For example, in the
phone communication network we can measure the strength of
the interaction between two individuals either as the number
of minutes spent on the phone talking to each other, or the
number of calls placed between them. Although including such
weights will not change the phase diagram, it would be
desirable to extend the proposed methodology to account for
this additional layer of information. Most important, addi-
tional work is needed to understand the origin of the observed
correlations between node characteristics and network struc-
ture. What mechanisms make the protein interaction network
heterophobic, the service usage in mobile communication
network heterophilic, while both are dyadic? Can we predict
from microscopic mechanisms the nature of the observed
node-network correlations? Answering these questions could
lead to a deeper understanding of the interplay between
structure and functions in complex systems.
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Supporting Text

Determining the Phase Boundary

As pointed out in the main paper, in order to construct a two-dimensional
phase boundary, we must obtain the extrema (the maximum and the mini-
mum) of m11 given m10, or vice versa. Equivalent, but more convenient, is
to extremize m11 or m10 given the degree sum K1 = 2m11 + m10 of the n1

nodes in the group. Writing as Kmax and Kmin the largest and the smallest
possible degree sums for n1 nodes in the network, we partition the range
[Kmin, Kmax] into S segments of equal length ∆K ≡ (Kmax − Kmin)/S. Then
we run an optimization algorithm such as the Fiduccia-Mattheyses method
(1-4) to obtain the extrema of m11 or m10 while limiting K1 to be within the
range

Kmin + (i ±
1

2
)∆K (1)

for 0 ≤ i ≤ S. This procedure is visualized in Fig. 4.

Stationarity of the Phase Boundary in ERG Networks

Unlike the Erdös-Rényi and the scale-free networks shown in Fig. 2 in the
paper, the power-law networks generated by the exponential random graph
method (5) show a slow convergence to a limiting value near the 2m11+m10 =
Kmax line for small a (Fig. 5). We show, however, that this is a finite-size
effect, and it disappears as the degree distribution pk approaches a true power
law as N → ∞. We first note that the farthest right-upper point of the
phase diagram corresponds to Kmax. It is well known that in a finite power-
law network, the largest node degree is N1/(τ−1) (6), i.e., shows a sublinear
scaling with respect to N . Therefore, a can be written as (C is a constant)

a = C

∫ N1/(τ−1)

k0

k−τ =
C

τ − 1

(

k
−(τ−1)
0 −

1

N

)

, (2)

1



from which we get the appropriate lower bound of the integral

k0 =
(a(τ − 1)

C
+

1

N

)1/(−τ+1)
. (3)

Finally, this gives

Kmax

N
= C

∫ N1/(τ−1)

k0

k k−τ =
C

τ − 2

(

k
−(τ−2)
0 − N

2−τ
1−τ

)

=
C

τ − 2

[

(a(τ − 1)

C
+

1

N

)
2−τ
1−τ −

( 1

N

)
2−τ
1−τ

]

, (4)

which is an increasing function of N that converges to a constant value as
N → ∞ for 2 < τ < 3, with a smaller rate of convergence for smaller a. This
and the excellent agreement in other parts of the phase boundary are very
strong indications of the stationarity of the phase diagram for this class of
networks models. We also note that, when compared with the ER network,
the phase boundary of the power-law networks is elongated into the upper
right side. This is a natural consequence of the fat-tailed degree distribution:
since (m11, m10) always satisfy 2m11+m10 = K1 (the degree sum of n1 nodes)
which may be much larger in the SF network, more pairs (m11, m10) in the
upper right side are available.

Protein Functional Classes and Mobile
Services

Tables 1 and 2 list the details of functional classes in S. cerevisiae, and
the most dyadic mobile services in the mobile communication network.
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Table 1. Values of D and H for the seventeen MIPS functional categories of
S. cerevisiae. The protein interaction data were taken from ref. 1.

ID Functional category nx D H
1 Metabolism 338 1.86 0.43
2 Energy 83 7.84 0.26
10 Cell cycle 415 2.44 0.38
11 Transcription 409 3.16 0.21
12 Protein Synthesis 206 10.1 0.15
14 Protein fate 462 2.09 0.44
16 Protein binding 464 1.86 0.64
18 Regulation of metabolism 122 2.32 0.62
20 Cellular transport 339 3.06 0.18
30 Cellular communication/signal transduction 95 7.68 0.31
32 Cell rescue, defense, and virulence 155 2.87 0.54
34 Interaction with environment 170 5.36 0.40
40 Cell fate 130 4.55 0.46
41 Development 23 10.5 0.92
42 Biogenesis of cellular components 335 2.90 0.39
43 Cell type differentiation 202 3.49 0.48
99 Unclassified 16 0 0.30

1. Han, J. J. et al. (2004) Nature, 430, 88-93
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Table 2. Details of eight most dyadic cell phone services shown in Fig. 3.

Service name D H n1

My group 355.775 1.25924 2964
Voice mail (sending) 109.927 1.73215 4749

Mobile pay 62.5802 1.35643 1742
Assist UNICEF 44.0958 1.72376 4000

Chat 38.4498 1.34818 44634
Movies and sports 29.7352 1.44256 3296

Voice mail (listening) 15.5986 1.3632 10067
Games 11.9435 1.18684 3546
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