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Abstract. – A complete characterization of real networks requires us to understand the
consequences of the uneven interaction strengths between a system’s components. Here we
use minimum spanning trees (MSTs) to explore the effect of correlations between link weights
and network topology on scale-free networks. Solely by changing the nature of the correlations
between weights and network topology, the structure of the MSTs can change from scale-free
to exponential. Additionally, for some choices of weight correlations, the efficiency of the MSTs
increases with increasing network size, a result with potential implications for the design and
scalability of communication networks.

Introduction. – The study of many complex systems has benefited from representing
them as networks [1]. There is now extensive empirical evidence indicating that the degree
(or connectivity) distribution of the nodes in many networks follows a power law, strongly
influencing properties from network robustness [2] to disease spreading [3]. However, to fully
characterize these systems, we need to acknowledge the fact that the links can differ in their
strength and importance [4–7]. This is demonstrated, e.g., in social networks where the
relationship between two long-time friends presumably differs from that between two casual
business associates [8], and in ecological systems where the strength of a particular species
pair-interaction is crucial for the population dynamics [9, 10].
The fact that links in complex networks are weighted rather than binary (present or absent)

must be taken into account when considering dynamical network processes like multicast
or broadcast, which have important applications in modern computer networks [11]. For
instance, when trying to broadcast a message like a new routing table, one must factor in that
different paths and links are characterized by varying degrees of time delay, bandwith, and
transmission costs. Consequently, one would attempt to reach all nodes preferably by using
as few connections as possible, while at the same time keeping the total weight (e.g., delay)
of the traversed links minimal. Similarly, the effective spreading of a computer or biological
virus to all nodes in a network would also opt for the low-weight paths. These broadcasting
problems all boil down to finding and characterizing the minimum spanning tree (MST) of a
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network [12, 13], where the MST is defined as the connected, loopless subgraph consisting of
(N − 1) links reaching all N nodes while minimizing the sum of the link weights.
Additionally, MSTs have received attention as examples of optimal path spanning trees [14,

15], and recently spanning trees have been invoked to explain properties of traceroute mea-
surements of the Internet [16]. At a more fundamental level, MSTs are closely connected
to invasion bond percolation [17], which has been studied extensively on regular lattices with
both random and correlated link weights [18], turning IBP into a key model of non-equilibrium
statistical mechanics [19].
In this paper, we present the first results on how the structure and efficiency of MSTs

change as a function of the correlations between the link weights and the network topology.
We start by examining the correlations between the weights and the network structure in
several real systems. We use the resulting insights to generate weighted scale-free networks,
the MSTs of which are either scale-free or exponential depending on the nature of the link-
weight correlations. In contrast, when correlations between weights and topology are removed,
we find that the MST degree distribution follows a power law with a degree exponent close
to that of the original network, independent of the weight distribution. Finally, we find that
the exponential MSTs are increasingly more efficient with increasing network size N , while
the efficiency of the scale-free MSTs quickly saturates at a finite value.

Topology correlated weights. – To uncover the relationship between network topology and
link weights, in fig. 1 we display the dependence of the weights on the node degrees for the E.
coli metabolic network, where the link weights represent the optimal metabolic fluxes [20]; the
US Airport Network (USAN) where the weights reflect the total number of passengers travel-
ling between two airports between 1992 and 2002; and the link betweenness-centrality (BC),
representing the number of shortest paths along a link for the Barabási-Albert (BA) scale-free
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Fig. 1 – The average weight of a link between nodes i and j shown as function of the link end-point
degree product kikj : i) the USAN with number of passengers as link weights; ii) E. coli metabolic
network with optimized flux as link weights [20]; iii) Barabási-Albert model with betweenness-
centrality (BC) as link weights. The solid (w ∼ (kikj)

0.5) and the dashed lines (w ∼ (kikj)
0.8)

serve as guides to the eye. Inset: The weights are determined by the end-point degrees ki and kj :
i) wij = kikj , ii) wij = max(ki, kj), iii) wij = min(ki, kj) or the inverse thereof iv)-vi).



310 EUROPHYSICS LETTERS

10
0

10
1

10
2

10
3

10
4

10
5

weight w

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
fu

ll(
w

)

kikj

kmax

kmin

10
−1

10
−2

10
−3

10
−4

10
−1

10
−2

10
−3

Fig. 2 – Distribution of link weights on N = 105 node scale-free networks. Link-weight choice i) (tri-
angles), ii) (squares) and iii) (circles) are all heavy tailed. The analytical predictions (eqs. (1)-(3))
are indicated as solid lines. Note that the solid curves have been shifted vertically without changing
the character of the scaling law. Inset: The inverse weight distributions iv)-vi) (triangles, squares
and circles, respectively) and the analytical predictions shown as continuous lines.

model [21]. For each of these systems the weight distribution follows a power law (not shown)
and, as fig. 1 shows, the average link weight scales with the degrees of the nodes on the two
ends of a link as 〈wij〉 ∼ (kikj)θ, similar to the scaling found for the World Airport Network [6].

These empirical observations allow us to assign weights to the links of a network for which
we only have the network topology. To systematically study the role of the weight correlations
on the structure of the MSTs, we use several weight assignments. i) First, we choose wij = kikj

(see inset of fig. 1). Note that the MST generated by this weight assignment is identical to
the MST obtained for weights w′

ij = (wij)θ with any θ > 0, as it is the rank of the weights
and not their absolute value that determines the MST [22]. We have also studied the two
extreme cases of topology-correlated weights, distributed according to ii) wij ∼ kmax and iii)
wij ∼ kmin, where kmin = min(ki, kj) and kmax = max(ki, kj) and with k2

min ≤ kikj ≤ k2
max.

For an important class of weighted network models choice iii) follows naturally from the local
growth rules [23]. Finally, we investigate the structure of the MSTs after transforming cases
i)-iii) as w′

ij = 1/wij , resulting in the link-weight choices iv) wij ∼ 1/kikj , v) wij ∼ 1/kmax

and vi) wij ∼ 1/kmin.

Weight distributions. – First, we grow scale-free networks according to the BA model [21],
the resulting networks having a degree distribution P (k) ∼ k−γ with γ = 3. We then assign a
weight to each link according to i)-vi). Assuming that the degrees at the two ends of a link are
uncorrelated, we can determine the weight distribution analytically using order statistics [24],
finding

Pkikj
(w) = (γ − 2)2 m2(γ−2) w−γ+1 ln(w/m2), (1)

Pkmax
(w) = 2(γ − 2)mγ−2w−γ+1

[
1−

( w

m

)−γ+2
]

, (2)

Pkmin
(w) = 2(γ − 2)m2(γ−2)w−2γ+3, (3)
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Fig. 3 – Degree and weight distribution of N = 104 node MSTs. (a) The degree distribution for
weights proportional to either kikj (i) or kmax (ii) are dominated by an exponential cut-off, while (b)
it is heavy-tailed for weights proportional to kmin (iii) and inversely proportional to either kikj (iv),
kmax (v) and kmin (vi). (c) The distribution of link weights on the MSTs is a power law for i), ii)
and vi) (w × 103), while (d) it is dominated by an exponential cut-off for iii) (w × 0.02), iv) and v).
For each weight choice we averaged over 104 different MSTs.

where m is the number of links connecting a new node to the existing nodes in the BA model.
Corresponding expressions for the inverse degree correlations are obtained after the variable
change w′ = 1/w. In fig. 2 we compare the numerically determined weight distributions
with the scaling predicted by our analytical expressions. The numerical curves display a w-
dependency close to that of eqs. (1)-(3), unaffected by the degree-degree correlations in the
BA model [25, 26]. Note that power law weight distributions like those in fig. 2 have been
observed for a wide range of network based dynamical processes [27].

Minimum spanning trees. – The MSTs were generated using Prim’s algorithm [28]:
starting from a randomly selected node, at each time step we add the link (and hence a node)
with the smallest weight among the links connected to the already accepted nodes. Whenever
n links with the same minimal weight are encountered, we break the degeneracy by randomly
selecting one among them with probability 1/n.
The numerical results indicate that the topology of the resulting MSTs falls into two

distinct classes [29,30]. Correlated weight choices i) and ii) give rise to MSTs with exponential
degree distributions (fig. 3a), while choices iii)-vi) result in MSTs with power law distributions
(fig. 3b). We can understand the exponential nature of weight choice i) and ii) MSTs by the
following argument: Since the MST tends to avoid links with large weights, it effectively shuns
the hubs for the cases wij = kikj and wij = kmax, utilizing instead, whenever possible, links
connecting low degree nodes (fig. 3a). Consequently, all the hubs are marginalized and the
MST degree distribution must have a narrow range. This is supported by figs. 4a and b,
where we show examples of MSTs for weight choices i) and ii), respectively. The sizes of
the nodes in the figure reflect their degree in the original network. It is evident that the
majority of the hubs are located on the branches (k = 1 degree nodes) of the MST (fig. 4).
Additionally, this reliance on the small nodes and tendency to avoid the hubs forces the MSTs
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Fig. 4 – (Color online) Minimum spanning trees of a N = 103 node scale-free network for weight
choices (a) kikj , (b) kmax and (c) kmin. The size of a node represents its degree in the full network,
and the color of a link represents its weight from low (black) to high (green). Note that the MST
degree distribution is exponential for (a) and (b) and a power law for (c).

generated through method i) and ii) to be very similar. Indeed, on comparison we find that
any two MSTs generated from the same original network, but with weights assigned using
either method i) or ii), have 87% of the links in common. This explains the similar visual
appearance of the two MSTs (figs. 4a and b).

The second class of MSTs is well represented by weight choices iii)-vi), resulting in MSTs
with power law degree distributions. The similarity between weight schemes iv) and v) is
emphasized by the fact that their MST degree distributions have the same power law exponent,
γ = 2.4 [31] (fig. 3b). The links with the lowest weights are now connected to the hubs of
the original network, and the MST grows utilizing these hubs extensively. Hence, the hubs of
the full network experience only a slight reduction in their degree and are found at the center
of the resulting MSTs (fig. 4c), while the intermediate-degree nodes sustain large losses of
neighbors and are found at the branches of the network with only a few neighbors (fig. 4c).

The weight distribution on the MSTs also displays two distinct behaviors: it is either power
law (fig. 3c) or exponential (fig. 3d). It is interesting to note that MSTs with exponential
degree distribution (fig. 3a) have power law weight distributions with best-fit exponents of
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Fig. 5 – The efficiency of the MSTs as a function of network size. The average relative weight on the
MSTs for choice i) and ii) displays a power law decrease, while weight choices iii)-vi) all saturate at
a finite value.
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σ = 3.1 (case i)) and σ = 3.0 (case ii)) (fig. 3c). Similarly, for weight choices iii)-v) the MST
degree distribution is power law while the weight distribution is exponential or stretched
exponential (fig. 3d). However, for weight choice vi) wij = 1/kmin both the degree and the
weight distribution of the MST are power law. Since there is a high degree of degeneracy for
this MST, it is no surprise that the resulting degree distribution is very similar to the case of
random weight assignment [29].
Finally, we characterize the efficiency of the MSTs by calculating their average total weight

relative to that of the full network WMST (N)/W (N), where W (N) =
∑

wij , for each of the
weighting methods (see fig. 5). We find that the efficiency of an MST depends strongly on
the type of weight-topology correlation present: While the relative total weight for choices
iii)-vi) saturates at a finite value, we find a power law decrease for choices i) and ii). Hence
for the empirically motivated case i), the MST becomes increasingly more efficient the larger
the network is.

Discussion. – As networks play an increasing role in the exploration of complex sys-
tems, there is an imminent need to understand the interplay between network dynamics and
topology. While focusing on the MSTs of scale-free networks, our results emphasize the sig-
nificance of correlations between link-weights and local network structure. In the presence of
correlations two classes of MSTs exist for scale-free networks, having either a power law or an
exponential degree distribution, while the removal of correlations renders the MSTs scale-free.
Additionally, the efficiency of MSTs, which is important for many routing and broadcast ap-
plications, varies dramatically with the nature of the correlations. Note that our findings are
quite general, e.g. the MST of the US airport network, which unlike the BA model has strong
degree correlations, is (power law) exponential when the link-weight is taken to be (inversely)
proportional to the number of passengers. This is also true for the metabolic network of E. coli.
Our findings could serve as a natural starting point towards the systematic exploration of

weighted networks. For example, while we have assumed that the weights are static, incorpo-
rating their time dependence may reveal novel dynamical rules. Second, we model the weights
as solely dependent on the topology, potentially overlooking correlations among the weights
themselves. Uncovering the role of such correlations remains a challenge for future research.
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