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Dynamic scaling of coupled nonequilibrium interfaces
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We propose a simple discrete model to study the nonequilibrium fluctuations of two locally cou-
pled (141)-dimensional systems (interfaces). Measuring numerically the tilt-dependent velocity we
construct a set of stochastic continuum equations describing the fluctuations in the model. The scal-
ing predicted by the equations is studied analytically using dynamic-renormalization-group theory

and compared with simulation results.
PACS number(s): 05.70.ln 05.40+j

The dynamics of equilibrium and nonequilibrium in-
terfaces has attracted much attention recently [1]. The
continuum theory proposed by Kardar, Parisi, and Zhang
(KPZ) [2] provided a very successful analytic approach
for different problems, ranging from spin systems to
growth models. However, usually the dynamics of inter-
est is dominated by a strong-coupling fixed point, making
the perturbative approach inconclusive. In such a situ-
ation simple discrete models allow us to obtain detailed
information on the dynamic scaling.

In this paper a generalized single-step model is intro-
duced to study the nonequilibrium dynamics of two cou-
pled (1 + 1)-dimensional systems. Investigating the tilt
dependence of the growth velocity we find that the set
of nonlinear equations describing the fluctuations of the
two surfaces ho(z,t) and hi(z,t) is

Btho = 1902ho+X0(8zho)%+708:ho8zh1+90(8zh1)%+70,
(1a)

Bth1 = 1182h1+A1(0zh1 )2 +710: hods by +©1(8zho) 2 +11,
(1b)

where 0; and 8, denote the partial derivatives with re-
spect to t and z. The noise is assumed to have zero mean
and uncorrelated (n;(z,t)n;(z',t')) = D;6(t —t')6(x — z')
with ¢ = 0,1. The scaling of the fluctuations is deter-
mined numerically from the discrete model and the re-
sults are compared with the predictions of the dynamic-
renormalization-group (DRG) calculations. A slightly
modified version of the model allows us to study the evo-
lution of a growing interface perturbed by a nonequilib-
rium field. The increase of the roughness exponent of the
surface observed numerically is supported by the analytic
predictions.

Equation (1) represents the most general form describ-
ing the fluctuations of two coupled nonequilibrium sys-
tems with local dynamics. It describes the evolution of
two interfaces that are moving with the same mean veloc-
ity in an inhomogeneous media and are coupled by some
local interaction. More generally it describes the growth
of an interface ho(z, t) in the presence of a nonequilibrium
field hj(z,t), assuming that the interface and the field
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are strongly affecting each other’s behavior. In this re-
spect it might provide a suitable analytic framework with
which to describe the recent surface growth experiments
in which the control of other physical factors was not
possible. Such a perturbing field might be the density or
pressure of the fluid during fluid displacement in porous
media (3], the concentration of the nutrient in bacterial
growth [4], or the density of the mesoscopic particles and
impurities in the imbibition experiments [5].

On the other hand, the study of Eq. (1) is of general
interest in the context of the recent efforts to understand
the general properties of the nonequilibrium stochastic
systems. Recently, Ertas and Kardar (EK), studying the
motion of a single flux line in random environment, have
presented a detailed investigation of (1) for 79 = A\; =
¢1 = 0 [6]. Imposing an additional condition, ¢ = 0,
the problem reduces to the convection of a passive scalar
field [T = h;(z,t)] in a random velocity field (v = Vhg)
[7). For v1 = ¢1 = 0, Eq. (1) describes the fluctuations
of an interface ho(z,t) evolving under the influence of an
independent nonequilibrium field hy(z,t) [8].

The model. Our goal is to introduce a simple model
to study the scaling of the two coupled interfaces. For
this we use the mapping between the single-step model
and the driven hard-core lattice gas on a one-dimensional
chain [9]. In the mapping each step along the surface
ho(z,t) is associated with a site on the chain Hp. A site
j is said to be occupied [i.e., Ho(j) = 1] if we have an
upward step on the interface ho(z = j,t), and is empty
[Ho(j) = 0] otherwise. Two one-dimensional lattices,
Hy(j) and H,(j) with (j = 1, L), are filled with prob-
ability % First choose randomly a site j on one of the
lattices (for example, Hy). If it is filled [i.e., Ho(j) = 1],
the quantity ¥ = [Ho(j—1)+Ho(j)+Ho(j+1)—1.5][H1(j
—1) + H1(j) + H1(j + 1) — 1.5] determines the direction
in which the chosen particle wants to move. If ¥ > 0 the
Hy(j) particle will try to move to the left, otherwise to
the right. The step can be completed only if the neigh-
boring site in the chosen direction is empty. Then choose
randomly another particle on the other lattice and re-
peat the same procedure. The unit of time is defined as
L trials per lattice, where L is the system size. Periodic
boundary conditions are imposed on both of the lattices.

The quantity [Ho(j — 1) + Ho(j) + Ho(j +1)] is related
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to the local slope of the interface ho(z = j,t); thus with
a positive 1 the two interfaces have the same slope and
generate a growth on site j, while a negative 9 corre-
sponds to different slopes and results in a decrease of the
height.

We are interested in the scaling of the fluctuations
characterized by the dynamic scaling of the width
w?(Lvt) = ([h,(l‘, t) - h’i(t)]2> = sz"f(t/Lz‘l)’ where Xi
is the roughness exponent for the interface h;(z,t), and
the dynamic exponent 2; describes the scaling of the re-
laxation times with length; A(t) is the mean height of
the interface at the moment ¢ and the () symbols denote
ensemble and space average. The scaling function f; has
the properties fi(u — 0) ~ u?% and fi(u — 00) ~ const,
where 3; = z;/x;-

Tilt dependence. In order to identify the relevant
nonlinear terms determining the scaling behavior in the
model we have measured the tilt-dependent velocity [10],
imposing a global slope on the interfaces ho(z,t) and
hi(z,t). A positive slope is induced on ho(z,t) by in-
creasing the concentration of the Hj, particles; a neg-
ative slope is a result of a decrease in concentration.
Figure 1 shows the tilt-dependent velocity vy and v,
where v; = 3., 1(Bthi(z = j,t)). The velocities
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which may explain the observed behavior and are com-
patible with the £ — —x symmetry of the model have
the form vp = k — ag(0zho0zh1) — bo(dzho)? and v; =
k + a1(8:ho0zh1) — b1(82ho)?, where k, a;, b; are positive
constants. The tilt in ho(z,t) induces a negative miz-
ing term (8;hod;h1) in vy and a positive one in v;. But
since in the model the influence of the hy(z,t) to hi(z,t)
is identical to the influence of hj(z,t) to ho(z,t) (sym-
metric coupling), without tilt one expects the same sign
for both mixing terms. The symmetric coupling is re-
sponsible for the presence of a ¢o(0;h1)? term in vy and
a A1(0zh1)? term in vy, which can be observed if the tilt
is in hy(z,t) instead of ho(z,t). Based on these measure-
ments we conclude that Eq. (1) contains all the relevant
nonlinear terms determining the scaling of the two inter-
faces, and it describes the proposed model if A; < 0 and
;i < 0. Higher-order terms might be responsible for the
unusual behavior observed for large tilts, but they are in
fact irrelevant concerning the scaling.

Dynamic-renormalization-group analysis. The scaling
behavior of Eq. (1) in general can be investigated using
one-loop DRG calculations {7, 11]. Rescaling the param-
eters z — efx, t — ef?t, and h; — efXih;, we obtain the
following flow equations for the coefficients:

v _ 1, K A8Do | 71p0Ds Kiv  2p1Do " ’70D1) L Ko _w-wn (20100 yDy

de 0 Vo Vg 2v2 2wo(vo +11)° wo 1 vo (vo+11)? Vo 1 ’

dDo /\%DoKl ’)’ngKl QogD%Kl

40 _ —2x0—1

de Do [z Xo + Vg vov1(vo + v1) vio

dXo K, 201Do  70D1\ [Y0Xo o — V1 | 2¢0p1 Yov1

4l _ ) —2 - - 2
de 0{Z+X0 ]+ Vo + 11 ( Vo "1 Vo Vg+ 11 + 13} Vo + 11 ’ ( )

dvo K, 2¢p1Do  vDy
@ _ _9 _
a7 Yolz +x1 — 2] + ot o 7o ” Yo

(0 =2A1) _ Xogo | Mo
Vo + 11 Vo 21/1

200D1  mDo 7 —2X | oY  opr
+ - Yo + - ’
141 4] v+un 21y V1
dpo K, 71 Do 2<P0D1) ( 71— 2X0 Yo — 2>\1>
0 _ sol2xt — —2 - + .
a7 wo[2x1 — X0 +2—2] + ot e ” ®o ” y———v.

The flow equations for the other five missing coefficients
can be obtained from (2), replacing vy < vy, Dy « Dy,
Ao < A1, Yo < 71, Po < @1, and xo < X1

Obtaining the exponents from (2) is not straightfor-
ward because of the large number of parameters involved,
but important results can be obtained by making use of
the nonperturbative properties of (1) combined with the
direct integration of (2).

If 2(,00VOD1 = ’)’11/1D0 and 2(p1V1DQ = ’)’ol/()Dl
[fluctuation-dissipation (FD) subspace] the joint proba-
bility [6]

plho(z,t), h1(z,t)] = exp [—/dm( 2I/Té’0(6mho)2

21;1 (31h1)2> ]

is a solution of the Fokker-Planck equation following from
(1). This provides us the exact exponents x; = —;— In this
case the nonlinear terms do not renormalize, resulting in
the scaling relation z + x; = 2. Direct integration of (2)
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shows that for positive a;, ¢;, and v; the flow converges
to the FD subspace, thus resulting in the superdiffusive
exponents x; = 4 and z = 3. A change of variables
ho — —hg and h; — —h; indicates the same exponents
if all the coefficients of the nonlinear terms are negative.

As the velocity measurements indicated, \; < 0 and
@i < 0 in the model. If 4; is also negative, the FD
subspace dominates the behavior. The DRG does not
provide exact results in the v; > 0 case; direct inte-
gration of (2) indicates a strong-coupling fixed point,
with diverging A;, i, and ;. The exponents in the
model were determined using saturated systems of size
L = 50,100,200,400 and unsaturated systems of size
L = 1000,2000,4000. The roughness exponent y; was
obtained from the best collapse for the time-dependent
width. All the simulations indicated superdiffusive ex-

ponents, giving as a result x; = 0.52 + 0.03 and §; =
0.32 £ 0.02. Concluding this section we note that the
simulations are in perfect agreement with the predictions
of the DRG for v; < 0, so it is very likely that this is the
sign of the mixing term in the model. But since no ana-
lytical results are available for v; > 0, we cannot rule out
the possibility that for this sign the fluctuations of the
two systems are also characterized by the superdiffusive
exponents.

The Ao = wo = 1 = 71 = 0 case. The h; interface
fluctuates independently of hg in the following version of
the model: The randomly chosen particle on the Hy chain
will try to move in the direction determined by the sign
of 9, but the one chosen on H; will try to move left with
a probability p and right with probability 1 — p, indepen-
dently of . On H; we have the single-step model with
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FIG. 2. The Ao = @i =1 = 0 case: The
scaling of the width with time for systems of
1 size L = 200, 400, and 800. An average over
1000 independent runs was taken. The main
figure shows the scaling after an intrinsic
1 width [12] of magnitude 0.225 was extracted
from the data. The slope of the straight part

wzo(t)

0.1

) gives fo = 1 = 0.33 = 0.02. The roughness
— exponent x was determined from the best col-
| lapse of the data, shown in inset (a). Inset (b)
shows the scaling of the height-height corre-
_ lation function (|h;(z, t)—hi(z+1, t)|%) ~ 12X
for the interfaces ho(z,t) (empty symbols)
and hi(z, t) (filled symbols), for the same sys-
1 tem sizes as in the main picture. The slope
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of the straight line is 2xo = 1.28.
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evaporation. If p # %, the fluctuations of the hy interface
are described by the KPZ equation; thus y; = ¢; = 0 in
(1). For p = 1, measurements on the tilt dependence of
vg indicate the absence of the Ag and ¢ terms. But these
results do not indicate the absence of the v term: the
fact that it has no influence on the velocity may come
from the vanishing contribution of (8,ho8;h1), which is
acceptable, considering that h; fluctuates independently
of hg. The exponents determined from the model are
Xo = 0.64 £ 0.03 and By = 0.33 + 0.02, together with
the known exponents of the KPZ equation: x; = -%— and
6= % (see Fig. 2). These exponents are in good agree-
ment with those obtained by EK from the direct integra-
tion of Egs. (1) for A; < 0 and 9 > 0 [13]. The flow
equations (2) show that A; scales to zero; thus the DRG
is not conclusive for these coefficients. It indicates only
that zg > 21, which agrees with the numerical findings.
A support for the positivity of v comes from the DRG
result for 79 < 0, the one-loop exponents being xo = %
and [y = %, considerably larger than those observed nu-
merically in the model [14].

The Ao = A1 = @o = p1 = 71 = 0 case. If in the second
variant of the model we choose p = %, the h; interface
fluctuates in equilibrium with A\; = ¢; = 71, leading
to the Edwards-Wilkinson (EW) exponents x; = 3 and
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B1 = % [15]. The situation in the model is the following:
the h; interface fluctuating in equilibrium influences the
fluctuation of the hg interface through the mixing term
(OzhoOzh1). The velocity measurements again confirm
the absence of the ¢;, A; terms. The simulations indicate
the nontrivial exponents xo = 0.68+0.02 and 5y = 0.34+
0.02, together with the EW exponents for h;. The DRG
in the present form cannot be applied because of the
different scaling of the time in the two interfaces (i.e.,
20 74 Zl).

In this paper we have focused mostly on those param-
eter values that were accessible through the studied dis-
crete models. For symmetric coupling the model allowed
us to determine the scaling exponents that were consis-
tent with the exact results obtained from the DRG. The
study of two particular cases was also possible using a
modified version of the model. Both cases lead to con-
siderable enhancement of the roughness exponent xg.
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