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Three-Dimensional Toom Model: Connection to the Anisotropic Kardar-Parisi-Zhang Equation
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A three-dimensional Toom model is defined and the properties of the interface separating the two
stable phases are investigated. Using symmetry arguments we show that in the zero-noise limit the mod-
el has only nonequilibrium fluctuations and that the scaling is described by the anisotropic Kardar-
Parisi-Zhang equation. The scaling exponents are determined numerically and good agreement with the

theoretical predictions is found.
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Fluctuations of equilibrium and nonequilibrium inter-
faces have attracted much attention in the recent past, in
part because of their relevance to many fields, ranging
from spin systems to growth models [1]. Derrida, Le-
bowitz, Speer, and Spohn (DLSS) [2] studied the novel
behavior of an interface separating the two stable phases
in the two-dimensional Toom model, which is a relatively
simple probabilistic cellular automaton [3]. The model
has attracted much attention since Toom proved its
nonergodicity in the presence of small perturbations. The
robust nonergodicity and its implications for generalized
Ising models have also been studied [4]. DLSS raise the
interesting possibility that the Toom model is “generic”
for a variety of physical systems. Here we take a con-
crete step in this direction by (i) extending the Toom
model to three dimensions, and (ii) mapping the interface
of this probabilistic cellular automaton (with purely
geometric rules) onto the anisotropic Kardar-Parisi-
Zhang (AKPZ) equation [5]. We focus on the fluctua-
tions of the two-dimensional interface separating the two
stable phases existing in the three-dimensional system.
Finally we report numerical measurements on the inter-
face predicted by the AKPZ equation and determine the
scaling exponents in the strong coupling regime.

The Toom model.—In the two-dimensional Toom
model, spins with values S =*1 are simultaneously up-
dated at every time step as follows: S(i,j) becomes equal
to 1 with probability p, —1 with probability g, and, with
probability 1 —p—gq, becomes aligned with the majority
of itself and a specified set {S} of neighboring spins. In
the simplest version, {S} is defined as the northern and
eastern neighbors (NE model).

Here we introduce the three-dimensional model [6],
with the set {S} being comprised by four of the neighbor-
ing spins {G+1,7,k);G,j+1,k);G,j,k—1);G+1,j+1,
k—1)} (see Fig. 1). When p =g =0, the Toom model is
deterministic. For small enough noise (small p and q)
the model for any dimension is nonergodic, with two
stable phases formed by spins +1 and —1. The mecha-
nism is best explained first for the case of the d=2 NE
model. Here a 135° diagonal interface between up and
down spins drifts southwestward with unit speed because
sites just southwest of the interface, at each instant of

time, have neighborhood majorities dominated by their
north and east neighbors on the other side. For the
three-dimensional model the {S} vicinity will influence
the value of the spin (i,j,k); thus the transition rule is
characterized by a transport direction determined by a
vector with direction AB=(—1,—1,1) (see Fig. 1).

Symmetry properties of the interface.—The direction
of the vector AB together with the boundary conditions
determine the position of the interface separating the two
phases. The symmetry properties of the transition rule
imply a reflection symmetry with respect to the plane
containing AB and perpendicular to the plane k =0. To
obtain a flat well-defined interface, we choose boundary
conditions as follows [7]: We divide the k=0 plane in
two by the line i — j=0; for the spins with i —j > 0 we fix
S = —1, while for spins with i —j <0 we take S=+1.
The volume in which the Toom rule operates is deter-
mined by the conditions kK >0 and i —j <0.

With these boundary conditions we shall obtain an in-

i

FIG. 1. The three-dimensional Toom rule used in this work.
The black box S(i,j,k) is updated with the majority of itself
and the vicinity {S} (shown by the white boxes, which corre-
spond to the three nearest neighbors and one next-nearest
neighbor in the eighth octant of a Cartesian coordinate system
centered on the shaded box). The vector AB represents the
transport direction (see text).
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terface (Fig. 2) which is anchored to the line (i — =0,
k=0) and which separates two phases, with + 1 spins un-
der it and —1 above. In the zero-noise limit (p— 0,
q— 0), we add a + or — spin to the interface and wait
until the resulting perturbation has settled down— op-
erationally, we apply the deterministic part of the Toom
model until no further changes are observed.

To obtain some intuitive understanding of the d=3
case, we shall call particles those sites which have spin
+1, while the — 1 sites will be empty. Thus, converting a
spin —1 to +1 corresponds to inserting a particle, while
converting a spin from +1 to — 1 corresponds to remov-
ing a particle. One can easily verify the following proper-
ties: (i) Starting initially only with the boundary condi-
tions (particles only on the semiplane k=0, i—j <0),
the interface will be stable if p =0, i.e., the noise does not
generate particles on the interface; (ii) ¢ =0, p=0 will
generate a stepped interface which forms an angle with
the horizontal plane (k=0) equal to the angle formed by
AB with the plane k=0. So for general p and g, the
mean position of the interface will be an inclined plane
between limit (i) and (ii), at an angle determined by the
values of p and q.

Using the system of coordinates of Fig. 2, we note that
the rule determining interface fluctuations (a) has re-
flection symmetry x, — —x,, (b) has a translational
invariance in h, x , and x,; [8], (c) lacks reflection sym-
metry in x,, and (d) lacks reflection symmetry in h. The
(d) property needs some more comments. In the case of
the two-dimensional NE model the 1D interface fluctu-
ates under equilibrium conditions for p=g because the
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FIG. 2. The height function h(x,x)) is defined as a devia-
tion from the flat steady-state interface profile (the inclined
plane). The system of coordinates of the interface is defined by
x4 and x;. The system of coordinates of the Toom rule is given
by the i,j,k axes.
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deterministic part, defined by the choice {S}, has re-
flection symmetry in A. The nonequilibrium fluctuations
appear only when this symmetry is broken by imposing
p#q. In our case the deterministic part is characterized
by the lack of the up-down symmetry in A, related to the
fact that there is no plane containing the (i — j=0, k =0)
line to serve as symmetry plane for the transition rule, so
for any p and g values the interface will fluctuate under
nonequilibrium conditions [9].

The KPZ approach is to consider the lowest-order
Langevin equation compatible with the symmetry condi-
tions of the transition rule. In the present case, the con-
tinuum equation compatible with the above symmetries
[10,11] is the AKPZ equation [5]
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Equation (1) is obtained by writing all possible terms and
then eliminating those that do not satisfy the symmetry
conditions (a)-(d).

The noise is assumed to be uncorrelated, with zero
mean and two-point correlation function (n(x,)n(x",t'))
=D5(t —1')6(x —x'). For an unpinned interface the a,
term in (1) can be eliminated by the coordinate transfor-
mation xy— x;+az. For the pinned one this term can-
not be eliminated, but has no effect on the value of the
scaling exponents [2].

Wolf showed [5] using a dynamic renormalization-
group analysis that if the two A terms have opposite signs,
the nonlinear terms are not relevant, and the interface
fluctuations are determined only by the diffusion terms
vi92h/dx? and v, 82h/8x%. This is the case for the vici-
nal surfaces in which context this equation was originally
introduced. The Toom interface is described by the
strong coupling fixed point becoming relevant if the non-
linear terms have the same sign. Rescaling (1) according
to x, — bxy, xy— b*xy, h— b®h, t — b?t, from the non-
renormalizability of the A’s one gets the scaling relations

[5]
z+a=2, (2a)

x=1. (2b)

The dynamic renormalization-group analysis fails to give
the exact values of the exponents for the strong coupling
regime.

We succeeded [12] in measuring z and a for the two-
dimensional interface of the three-dimensional Toom
model in the zero-noise limit. Given the interface gen-
erated by the model (see Fig. 3), the fluctuations in the
x, direction are extracted from the scaling relation
(Th G 1, x0) —h(x 1, x1)1%),, ~x PP, where B=a/z, and h
is the time-averaged value of A(x ,x)). In this direction,
due to the unidirectional flow of the information, there
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FIG. 3. An example of the two-dimensional Toom interface
for a 25x% 25 system with p#=0 and g=0.

are no finite-size effects. This flow and the pinning at
x =0 are believed to be responsible for the appearance of
the B exponent in this scaling relation. In the x, direc-
tion we imposed periodic boundary conditions and the
scaling was determined using the height-height correla-
tion function ([A(x o +1,xy) —h(x 1, x1)12~12® with x,
held fixed. The applicability of this relation is a result of
the reflection symmetry in x ,, as discussed above.

We used systems of size L XL, with L =128 and 256;
the best fit gives f=0.21 +£0.03, and a=0.43 +0.04.
The existence of nonzero scaling exponents indicates the
relevance of the nonlinear terms in (1), since the equilib-
rium fluctuations would lead to zero @ and . Moreover,
the numbers differ only slightly from those of the
(2+ 1)-dimensional isotropic KPZ equation (IKPZ) [13]
as expected, since the strong coupling phase of the AKPZ
and IKPZ equations are controlled by the same fixed
point [expressed by Eq. (2b) alsol.

Finally, we comment on the zero-noise limit and its re-
lation to the continuum approach. The zero-noise ap-
proximation is usual in the context of sandpile models,
where—in contrast to the present situation—it indicates
the end of the applicability of the continuum equations
[14]. This limit gives rise to the appearance of a self-
organized critical state, whose exponents differ from
those predicted by the continuum theory [11]. The
breakdown of the continuum approach can be attribut-
ed to the appearance of nonlocal events— avalanches
~— which in turn for finite noise have finite size due to the
collisions between simultaneously appearing avalanches.

We now argue that in the Toom model the existence of
the step structure is the mechanism which generates a
characteristic length scale in the avalanches, thus making
the dynamics local and justifying the continuum ap-
proach. As noted above, the values of p and g determine
the angle formed by the interface with the k=0 plane,
and thus determine, from simple geometric considera-
tions, a mean distance between the steps. If we place a
particle on a given step, it will generate a number of par-
ticles in the same layer, this number being determined by
the position of the following step forming the next layer
behind the new particle. Since the mean distance be-
tween the steps has a characteristic length scale, the
number of generated particles (i.e., the size of the

avalanches) will be bounded as well. These arguments
apply also to the NE model.
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