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Abstract
A major goal of pharmaceutical bioinformatics is to develop computational tools
for systematic in silico molecular target identification. Here we demonstrate that
in the yeast Saccharomyces cerevisiae the phenotypic effect of single gene dele-
tions simultaneously correlates with fluctuations in mRNA expression profiles, the
functional categorization of the gene products, and their connectivity in the
yeast’s protein-protein interaction network. Building on these quantitative corre-
lations, we developed a computational method for predicting the phenotypic ef-
fect of a given gene’s functional disabling or removal. Our subsequent analyses
were in good agreement with the results of systematic gene deletion experiments,
allowing us to predict the deletion phenotype of a number of untested yeast
genes. The results underscore the utility of large genomic databases for in silico
systematic drug target identification in the postgenomic era.

Synopsis
One of the central practical aims of mo-

lecular biology lies in the discovery of new
drugs to treat human diseases. Hence, it is
natural to ask how the flood of new infor-
mation produced by the genomics and pro-
teomics ‘revolutions’ might be put to use in
this regard. Consider antibiotics, for exam-
ple. The genomes of numerous bacterial
pathogens have been fully sequenced, and
researchers possess vast databases con-
cerning the properties of these organisms’
proteins.This information should enable re-
searchers to develop new and more effective
antibiotics to counter bacterial strains that
have evolved resistance to traditional com-
pounds.And yet the data can be overwhelm-
ing.A central difficulty in drug development
– not only for antibiotics but for new drugs
to treat cancers, fungal infections and other
disorders – lies in devising methods that are
capable of drawing meaningful conclusions
from masses of often confusing data.

On this issue, however, Jeong et al. offer
some hope – at least on the project of identi-
fying genes and proteins as potentially
promising drug targets.In the context of the
yeast Saccharomyces cerevisiae, they show
how to integrate three distinct types of ge-
nomic and proteomic data so as to predict
the ‘essentiality’ of a gene, i.e. to estimate
how crucial it is to the organism’s viability.
Clearly, the more essential a gene (or its as-
sociated protein) is to a pathogen or to a can-
cerous cell, the more attractive it is as a drug
target; hence, this algorithm illustrates one
way in which emerging data may be put to
use to identify potential new drug targets on
a ‘rational’basis.(Finding compounds to act
against such targets is, of course, another
problem altogether.)

How can one estimate the essentiality of
a gene? Jeong et al. begin by considering the
general functional character of a gene’s pro-
tein product. Traditionally, a protein’s func-
tion has been associated with its specific
molecular function – as a catalyst for a cer-
tain reaction, perhaps, or as a structural
component of the cell.But a more recent per-
spective views proteins as elements in bio-
chemical networks that act as functional
modules within the cell. One module might
be a collection of proteins involved in pro-
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Introduction
The development of novel antibiotics

and antifungal drugs is emerging as a criti-
cal issue for global healthcare due to the
rapid appearance of bacterial and fungal
pathogens possessing natural or acquired
resistance against available therapeutic
agents [1]. Similarly, the toxic side effects
and the limited spectrum of activity of con-
ventional chemotherapeutics necessitate
the development of new, rationally identi-
fied cancer therapeutics [2]. The sequen-
tial waves of emerging technologies in ge-
nomics, proteomics, and drug design hold
the promise of new avenues for the identifi-
cation of new medicines [3]. However, it is
yet unclear if the currently available ge-
nomic databases, coupled with newly de-
veloped computational algorithms, can of-
fer sufficient information for automated in
silico drug target identification. Here we
demonstrate that the available massively
parallel, systematic and complementary
datasets for the yeast Saccharomyces cere-
visiae offer unprecedented potential for the
development of quantitative predictions on
the phenotypic effect of a single gene’s
functional disabling or removal. The good
agreement between our in silico predic-
tions and systematic gene deletion experi-
ments allows us to take these tools from the
descriptive to the predictive phase, inferring
the essentiality of a substantial number of
genes whose phenotypic profile is un-
known.

Functional Classes
The phenotypic effect of a single gene

deletion on the viability of an organism is
traditionally thought to depend on the in-
dividual activity of its protein product.
However, an emerging postgenomic view
expands a protein’s role into an element in a
network of protein-protein interactions
with a contextual or cellular function [4, 5].
This realization requires the grouping of
gene products into functional classes based
on their ‘cellular role’, rather than their in-
dividual function. Thus, following the cate-
gories established by the Yeast Protein
Database (YPD) [6], we use the term ‘func-
tion’ or ‘functional class’ to describe the cel-
lular role a protein is engaged in, and not its

precise biochemical activity. While the
available 43 categories are broad, we find
that they offer a reasonable starting point
for our study. Thus, we followed the catego-
rization of YPD, in which a total of 3,765
proteins have been assigned to one or sev-
eral of 43 functional classes, leaving 2,547
proteins with unknown function [6].

The bar plot shown in figure 1a compiles
the result of systematic gene deletion stud-
ies [7] with the corresponding functional
categorization of gene products (table A,
Supplementary Material). It shows that
there are wide differences between the per-
centage of proteins that are essential or
nonessential in the different functional
classes, variations that often correlate with
biological expectations. For example, the
functional class with the largest percentage
(~60%) of essential genes is the one en-
compassing the proteins that are required
for RNA splicing (class No. 37). Indeed, the
proteins (together with additional RNA
components) involved in this process form
the splicesome [8], which can be viewed as
a distinct module with a key molecular
function [9]. Thus the absence of one of the
protein subunits could easily jeopardize
splicesome function and, consequently, cell
viability.On the other hand,among the pro-
teins responsible for small molecule trans-
port (class No. 42), only a small fraction
(4.9%) are essential, as the individual dele-
tion of single transporters apparently can
be mostly compensated by the activity of
other transporters and/or activation of al-
ternative metabolic pathways. As the black
bars in figure 1a indicate, in each function-
al class the deletion phenotype of several
genes remains unknown. Yet, assuming
that within a functional class the pheno-
typically tested gene products do not repre-
sent a biased subset, we can assign a likeli-
hood of essentiality to all genes based on
the observed phenotypic ratios. Indeed, if
functional class Y has NY proteins with
known phenotypic effect, of which NY

lethal

are known to be essential, then each un-
known protein has an fY = NY

lethal/NY proba-
bility to be essential. While fY differentiates
between genes belonging to different func-
tional classes, the prediction obtained this
way has a low resolution, as it assigns to all

tein synthesis and folding, while another
might handle DNA packaging and nuclear
transport. In this perspective, the function
of a protein is the function of the module to
which it belongs,much as one might see the
function of an individual within an organi-
zation as that of the department to which he
or she belongs – marketing, sales, produc-
tion,etc.

Does the function of a protein in this
sense offer any information about the likely
‘essentiality’ of its associated gene? Jeong et
al.show that it does by exploiting the results
of systematic studies of the phenotypic con-
sequences of gene deletions in S. cerevisiae
as stored in the Saccharomyces Genome
Database (SGD). One can consider a gene
(or its associated protein) to be essential if
its deletion leads to the loss of cell viability;
otherwise it is inessential.The Yeast Protein
Database has established 43 distinct func-
tional classes for yeast proteins,and the gene
deletion data reveal that the proteins within
some of these classes have a significantly
higher probability of being essential than
those in others.Within the class of proteins
involved in RNA splicing, for example,
roughly 60% turn out to be essential.Of pro-
teins responsible for small molecule trans-
port, only 4.9% turn out to be essential.
Some functional units are clearly more cru-
cial than others.

Gene deletion data are not available for all
yeast genes.But this analysis makes it possi-
ble to hazard a ‘first-order’ guess for the
probability that any untested gene will be es-
sential. Jeong et al.’s strategy is simple: for
any untested gene, first identify the func-
tional class into which its protein falls.Then,
from the available gene-deletion data,calcu-
late the fraction of genes from this class that
are essential, and take this as the estimate
that the untested gene will also be essential.
This is a baseline method of target identifi-
cation, and not terribly accurate, as it treats
all genes from any family as equally essen-
tial.The aim of this paper is to show how one
can improve on this estimate by bringing
further, independent data to bear.

To begin with, consider data on gene ex-
pression, which are publicly available for a
large number of yeast genes.One data set,for
example, records mRNA expression levels
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genes within the same functional class an
identical probability to be phenotypically
essential. Note that in reality the set of phe-
notypically tested genes are somewhat bi-
ased towards biologically ‘important’genes,
of which one expects a larger essentiality
ratio than random. Yet, as systematic gene
deletion methods are close to cover all
known yeast genes, this bias is not particu-
larly relevant at this point. Extending our
method to organisms for which the dele-
tion phenotype profiling is incomplete
would require addressing the effect of po-
tential bias in gene deletion.

Expression Patterns
To refine our ability to predict deletion

phenotypes we next examined the charac-
teristics of large-scale mRNA expression
patterns, as captured by two publicly avail-
able large DNA microarray datasets. The
first set provides-steady state mRNA ex-
pression data in wild-type S. cerevisiae
sampled 63 separate times (‘63 control’ set)
[10]. A second set provides data on individ-
ual cDNA microarray measurements on
251 viable yeast derivatives with a single
ORF deletion [10], see also Methods. Start-
ing with the 251 gene deletion data, for each

measured with DNA microarrays at 63 dif-
ferent times for wild-type S. cerevisiae. An-
other gives similar data for genes in 251 vi-
able yeast derivatives,each derived by delet-
ing one specific gene. The levels of expres-
sion for each gene vary (from one moment
to the next in the first data set, or from one
yeast derivative to the next in the second).
For each data set, Jeong et al. calculated the
standard deviation � of the expression lev-
els for each of the genes for which deletion
data is available. This offers a statistical
measure of how vigorously the expression of
each gene fluctuates,and it turns out that the
expression levels of some genes fluctuate far
more than others.Do these fluctuations car-
ry some information about how likely a gene
is to be essential?

Fig. 1. Correlations between gene essentiality
and various generic characteristics. a Essentiali-
ty vs. cellular function. The number of genes
with essential (red bar), nonessential (green bar)
or unknown (black bar) deletion phenotypes in
each of the 43 functional classes is shown. The
list of the functional classes is given in table A,
Supplementary Material. b The lethality curve
L(r) for functional class 31 (protein degrada-
tion). The three symbols correspond to the
lethality curves obtained from the 251 gene
deletion (black), the 63 control microarray data
(blue), and from the protein-protein interaction
data (green). The horizontal axis denotes the
normalized ranking r = R/N31. The diagonal
shown as a continuous red line represents the
expected curve if gene essentiality is independ-
ent of gene expression fluctuations or the num-
ber of protein interactions. c The lethality curve
L(r)
_

averaged over all 43 modules, similar to that
shown in figure 1b. d The lethality probability
�(r) as predicted from the data shown in figure
1b for the functional class 31 using the mathe-
matical tools described in the Appendix. Note
that the vertical axis represents a normalized
probability. These predictions assign to each
gene the probabilities ��251, ��63, and �k, provid-
ing the expected phenotypic likelihood that a
given gene is essential based on the three avail-
able datasets �251, �63, or k. Such predictions, 
issued separately for each gene, allow us to gen-
erate the ranking summarized in figure 3. For
this we have first fit a third order polynomial to
the lethality curves shown in figure 1c, and de-
termined �(r) using the methods described in
the Appendix. The slightly non-monotonic na-
ture of �(r) as inferred from the 251 microarray
dataset and the protein interaction data (black
and green) is somewhat unexpected. While we
could have used a lower order polynomial for
the fit to eliminate this non-monotonicity, we
were reluctant to bias the data.

a

c

d

b
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gene i we determined the standard devia-
tion (�i) in their mRNA expression across
the 251 different transcriptomes. Next, we
selected a functional class Y, with NY genes
with known deletion phenotype, and rank
ordered the genes based on �i by assigning
each gene i a rank Ri, so that the gene with
the smallest � has R1 = 1, and the gene with
the largest � has RNY

= NY. Assigning a
variable �i = 1 (0) to each essential
(nonessential) gene, we obtain the lethality
function L�(r) by summing �i from the
large to small r = R/NY. An illustrative re-
sult for functional class 31 is shown in fig-
ure 1b. If phenotypic essentiality does not
correlate with �, i.e., if an essential gene
can possess any � value, L�(r) should fol-
low the straight diagonal line shown in the
figure.On the other hand, we find that L�(r)
displays a systematic downward deviation
from the random essentiality diagonal, an
indication of correlations between gene es-
sentiality and �. In particular, the down-
ward deviation demonstrates that the large
r region (corresponding to high �) has few-
er essential proteins than the small r (i.e.,
small �) region. This tendency is clearly
seen in fig-ure 1c, where we show 

_
L�(r) av-

eraged over all 43 functional classes, dis-
playing a clear downward deviation from
the diagonal, indicating that, on average,
genes with small � are more likely to be es-
sential than genes with large �. These re-
sults indicate the presence of robust feed-
back mechanism(s) within the genetic
network of yeast cells which, upon pertur-
bations, maintain the mRNA expression
level of those genes that encode an essential
protein, on average within a narrower
range, while nonessential ones are allowed
to fluctuate more widely. Using the same
procedure, we have obtained similar results
for the 63 control data set as well. As figure
1b, c shows, the obtained L�(r) curve dis-
plays a downward deviation from the ran-
dom essentiality diagonal, though the effect
is somewhat less pronounced than that ob-
tained for the 251 gene deletion set. The de-
creased fluctuations in the expression level
of essential genes reflects the potential ex-
istence of feedback mechanisms that stabi-
lize their expression level. Indeed, wide
fluctuations in the expression level of the

essential genes could lead to the death of
the organism. Such constraints are less
needed for non-essential genes, a fact re-
flected in the correlations between essen-
tiality and � in both the 251 gene deletion
and the 63 control dataset.

Protein Interactions
Recent two-hybrid experiments in S.

cerevisiae [11, 12], complemented with ad-
ditional experimental data [13,14],approx-
imate the number of potential physical in-
teractions a gene product possesses
(although with a significant number of
false positives and negatives) [15]. In a pre-
vious study [5] we demonstrated that the
architecture of the resulting protein-pro-
tein interaction network is scale free [16],
which implies that highly connected pro-
teins play a more important role in guaran-
teeing the network’s integrity than their
less connected counterparts [5, 17]. Corre-
lating this property with known deletion
phenotypes we previously found that pro-
teins with more interactions were more
likely to be essential than less connected
ones [5]. To further refine this observation,
we selected in each functional class those
proteins for which k and their deletion phe-
notype are known simultaneously, where k
is the number of potential links a protein
has with other proteins. We rank ordered
the corresponding genes based on k, as-
signing �i  = 1 (0) to essential (nonessen-
tial) genes and summed �i starting from
the most connected proteins towards the
least connected one, obtaining for example
the Lk(r) lethality curve shown in figure 1b
for functional class 31. If the likelihood that
a gene is essential is independent of k, then
Lk(r) should follow the straight diagonal.
The fact that Lk(r) systemically deviates
above this line indicates that highly con-
nected nodes are more essential than their
less connected counterparts, the degree of
deviation offering a measure of the correla-
tion between a protein’s connectivity and
its essentiality within a given functional
class.We find that, to a varying extent, such
correlation is present in all functional
classes. Indeed, we determined Lk

Y(r) for
each of them separately, then calculated its
average 

_
Lk(r) over all 43 functional classes.

To show that they do,Jeong et al.carry out
a simple mathematical procedure within
each functional class of proteins. Suppose
that in some functional class Y, the conse-
quences of gene deletion are known for NY

genes.Arrange these genes in increasing or-
der according to the standard deviation �i of
their expression data, and then label each
with an integer index – the rank R – starting
at 1 on the left and increasing to NY on the
right. Now, to find out if the level of fluctua-
tions correlates in any way with gene essen-
tiality,one can start at the right end of the list
(where fluctuations are high) and see how
one encounters essential genes when mov-
ing to the left (where fluctuations are low).
Jeong et al. consider an informative ‘lethali-
ty’ function L�(r) – written in terms of the
scaled variable r = R / NY – that one might
compute along the way. To begin, at the far
right, set L�(r = 1) = 0. Then, moving from
right to left as r decreases from 1 to 0,define
L�(r) to remain constant except when one
encounters an essential gene, in which case
its value jumps by one.

Defined in this way, the points where
L�(r) suddenly jumps up in value mark the
essential genes. Consequently, this lethality
function has the form of an irregular set of
steps going roughly upward from right to
left. But the shape of this staircase reveals
the presence or absence of correlations be-
tween gene essentiality and fluctuations in
expression.If there is no correlation,then all
genes – regardless of their place on the list –
have the same chance to be essential.Hence,
the function should follow roughly along
some straight-line diagonal.Alternatively, if
the chance of gene essentiality increases or
decreases with decreasing levels of fluctua-
tion in expression, then the function should
begin to curve.If the likelihood of essential-
ity increases (or decreases) with decreasing
fluctuations,then the function should curve
upward (or downward).

The authors carried out this procedure
for each functional class, and figure 1b
shows representative results for functional
class 31 (corresponding to proteins involved
in protein degradation). In this figure, the
black symbols represent calculations from
the 251 viable yeast derivatives and the
green from the 63 samples from wild-type 
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As shown in figure 1c, the obtained 
_
Lk(r)

curve displays an upward deviation from
the random essentiality diagonal, demon-
strating a nonuniform essentiality within
functional classes.

Predicting Lethality
To take full advantage of the observed

correlations between essentiality and the
ranking of the gene products, we developed
a mathematical algorithm (Appendix) to
predict the likelihood that a given gene is
essential for the viability of S. cerevisiae.
For each gene product with a known or un-
known deletion phenotype we predict the
probability, �(r), that its ablation from the
yeast proteome would be lethal using as an
input the L(r) curves fitted individually to
each of the 43 functional classes and eq. (4)
in the Appendix. A set of representative
probabilities for functional class 31 – de-
rived from the L(r) curves in figure 1b – is
shown in figure 1d. For example, the blue
line based on the 63 control data in figure
1d predicts that a gene from class 31 with
ranking 0.8 has a 20% chance of being es-
sential. By contrast, the green curve indi-
cates that when based on protein interac-
tion a different gene with the same ranking
has a ~60% chance to be essential, as pro-
tein interaction essentiality increases with
their ranking.

As the methods based on �251, �63, or k
each offer a separate set of predictions for
each gene product,denoted by the probabil-
ities ��251, ��63, and �k, we need to investi-
gate to which degree they agree with each
other. The scatter plot shown in 
figure 2 contains all of the 2,350 genes for
which information is simultaneously avail-
able by all three methods. The clustering of
the points around the linear 45° diagonal
indicates a relatively strong correlation
between the predictions based on the three
separate databases. Yet, as the different
datasets are complementary, it may be
desirable to combine all three to improve
our predictions.If all three predictions were
independent from each other, the product 
�prod = ��251 � ��63 � �k should be used as
a combined lethality measure for each gene.
An alternative approach would be to use the
largest lethality probability offered by the

three methods �max = Max(��251, ��63 , �k),
with the assumption that a stronger signal
is more likely to be relevant than a weaker
one.

To test the validity of our method
against experimental results, we first uti-
lized data deposited in the Saccharomyces
Genome Database (SGD) by the interna-
tional deletion project consortium
(http://www-deletion.stanford.edu) and
compared them with our mathematical
predictions. In this repository, each gene
that has been deleted has its systematic
deletion phenotype (viable/lethal/slow
growth) identified based on identical
growth conditions [7]. From the database,
we rank ordered those 3,543 gene products
for which both deletion phenotype and
functional classification is known. Based
on their predicted lethality probability �,
we placed first those that have the highest
probability to be essential. The quality of
our predictions can be measured by the
separation of the essential from the non-
essential genes. In table 1 (see p. 28) we
quantify this separation by showing the
percentage of known essential genes in the
first 20% (predicted most essential) and
the last 20% (predicted least essential) por-
tion of the list. As the table indicates, each
of the five predictions was successful at
segregating the essential genes. For exam-
ple, the �max method assembles 48.3% of all
known essential genes into the top 20% of
the lethality list. The method works even
better at assigning low lethality probability
to the nonessential genes: only 3% of the
essential genes can be found at the bottom
20% on the �max list, i.e., practically all
genes assigned to the bottom fifth of the list
are known to be nonessential. The fact that
the confidence level of each of the five
methods is comparable indicates that any
of them can be used to individually predict
lethality.Thus, the lack of availability of one
or even two of the datasets for a given target
organism would not jeopardize our ability
to use the developed methodology. Never-
theless, in the following we focus on the
�max method to further validate our tools,as
we find that it offers slightly better predic-
tions.

S.cerevisiae.As the data reveal,the chance of
gene essentiality in this class becomes larg-
er with decreasing �, causing the lethality
function to curve upward.The benefit of do-
ing the analysis in terms of the scaled vari-
able r is that it lets one combine the results
from different functional classes in a natural
way (since r always ranges from 0 to 1).This
makes it easy to calculate lethality functions
averaged over all functional classes (fig.1c),
which again show an upward curvature. So
the fluctuations in gene expression levels do
appear to reflect the essentiality of the gene,
with lower levels of fluctuations being asso-
ciated with a high chance of essentiality.One
should be able to use this correlation to
make better predictions for the likelihood of
essentiality of untested genes than one
could do using functional information
alone.

Before turning to such predictions, how-
ever, Jeong et al. first note that another kind
of data has the potential to be exploited in a
similar way. Recent experiments have con-
structed an estimate of the topology of the
protein-protein interaction network for 
S. cerevisiae. Suppose that each protein is a
node in the network, and that two proteins
are linked if they interact with one another.
It turns out that within this network, not all
proteins participate in the same number of
links.In earlier work,these authors and oth-
ers have shown that the network has a ‘scale-
free’character,i.e.the probability that a pro-
tein participates in k interactions follows a
power-law function,P(k) � k–�,where � is a
constant. One consequence of this distribu-
tion is that a small number of proteins are
very highly connected and play the role of
‘hubs’. These proteins turn out to be crucial
to guaranteeing the basic topological fea-
tures of the network, such as its diameter –
the number of links it takes,on average,to go
between any two randomly selected pro-
teins in the network. From a topological
point of view, the loss of a node has conse-
quences that grow with the node’s ‘degree’ –
its number of links to other proteins.

For this reason, it is plausible to suspect
the connectivity of a protein might also car-
ry information about its essentiality. To
draw out this correlation, Jeong et al. again
build a lethality function Lk(r) within each
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functional class. They follow precisely the
same procedure as before, but now consid-
ering protein degree k rather than gene ex-
pression fluctuations �.As the green data in
figures 1b,c reveal, the lethality function for
functional class 31 and also for the average
over classes now curves downward, imply-
ing that proteins of higher degree tend to be
essential more frequently than those of low-
er degree.

This brings us to the main point of the pa-
per – how to integrate this information so as
to make improved predictions concerning
the likely essentiality of untested genes.The
authors do this by using their lethality func-
tions [either L�(r) or Lk(r)] calculated for
each of the 43 different functional classes.
These functions were calculated based on
the empirical data by summing over the var-
ious genes (in order of decreasing � or k),
adding 1 to the function for each essential
gene and a 0 otherwise. In this way, each
lethality function is proportional to a sum
over the probability of essentiality for the
genes in that class with different values of r,
i.e. L(r) � �r

�(r’)dr’. Hence, an estimate of
the probability �(r) can be obtained by dif-
ferentiation. This gives �(r) = c�L(r)/�r,
where c is a constant that is determined by
demanding that the sum of the probabilities
within each functional class be equal to the
number of lethal genes in that class (see eq.
3 in the Appendix). The mathematical for-
mula of eq.4 follows immediately.

How well does this algorithm perform?
Since Jeong et al. assembled their lethality
curves from several different data sets – two
for gene expression profiles and one for pro-
tein centrality – they actually have three dis-
tinct procedures. It makes sense then to put
this data together to produce one best esti-
mate.One way to do this is simply to take the
product of the various probabilities (suit-
ably normalized). Another is to define the
overall probability of a gene’s likelihood of
essentiality as the maximum of the proba-
bilities offered by the independent data sets.
Jeong et al. argue that �max defined in this
way should be more accurate than any one
estimate alone, as stronger signals are more
likely to be relevant than weakerones.

To test the accuracy of the approach, the
team first used the SGD database covering
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Fig. 2. Correlation between the predicted lethality probabilities. The three datasets, based on
�251, �63 and k offer independent predictions for the essentiality of the individual genes. The fig-
ure shows the correlations between these predictions. a Scatter plot showing the lethality prob-
ability as predicted by the �251 and �63 for each of the 3,543 genes for which microarray data
and functional classification are available simultaneously. b Scatter plot showing the lethality
probability as predicted by the �251 and k. cc The same for �63 and k for each of the 1,425 genes
for which functional classification and protein interaction information are simultaneously avail-
able. The clustering of the datapoints along the 45° diagonal indicates that the predictions of-
fered by the three methods correlate with each other.
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Figure 3a summarizes our main results
by predicting the deletion phenotype of a
major portion of the S. cerevisiae genome,
listing all 3,656 genes with known cellular
functions in decreasing order of predicted
lethality probability, �max(see also tables C
and D, Supplementary Material). Note that
the first line, which contains the predicted
most essential genes of S. cerevisiae, is in-
deed dominated by genes known to be re-
quired for their viability, demonstrating
that the algorithm efficiently differentiates
between essential and nonessential genes
(see also table 1, p. 28). Indeed, we find that
in the first 20% there are 2.41 times more
essential genes than expected,if the method
would assign essentiality randomly, collect-
ing more than 48% of all known essential
genes into this line. Conversely, in the last
line only 23 essential genes out of a total of
728 genes are found, indicating that genes
with a predicted low likelihood of essential-
ity are indeed, with very high confidence,
nonessential. Also, note that while not in-
corporated into our model explicitly, the
predictions assign the highest level of es-
sentiality to those proteins that participate
in several functional classes. By contrast,
the end of the list, with few predicted essen-
tial proteins,is dominated by those that par-
ticipate in one or at most two functional
classes (figure A, Supplementary Material).

As of April,2001, the deletion phenotype
of 440 S. cerevisiae genes haves not yet been
deposited in the SGD database. To further
investigate the validity of our method and
to predict the deletion phenotype of exper-
imentally untested gene products, we have
selected those 113 gene products for which
functional class assignment is available.
The deletion phenotype of some of these
genes was previously determined under
various (nonsystematic) experimental con-
ditions, and collated by the YPD/Proteome
database [6]. We sorted all 113 genes from
the most to the least essential based on
their computationally predicted �max and
compared the results to the available exper-
imental data.As shown in figure 3b (see al-
so table E, Supplementary Material), there
was a general agreement between the avail-
able nonsystematic experimental data and
our predictions. Indeed, we find that of the

first 12 genes listed, 9 are either lethal or
have growth defects,based on the predicted
�max, and only 3 known lethal genes can be
found outside of this domain. In addition,
figure 3b indicates that the untested gene
products, shown as white boxes, are not
likely to represent essential proteins of the
S. cerevisiae proteome. This is supported by
the predicted probabilities (�max) as well:
we find that �max drops rapidly from 70%
chance of being essential, assigned to the
first gene shown in figure 3b, to less than
40% starting from gene 12 on (and decay-
ing approximately exponentially after that).

Over the last decades the search for an-
timicrobial and antifungal agents has been
largely restricted to well-known compound
classes active against a standard set of drug
targets. Recent advances in genomics pro-
vide an opportunity to expand the range of
potential targets. These include identifica-
tion of genes associated with pathogenic
processes [18, 19] or using systematic gene
expression profiling to collect information
about cellular response to treatment with
various drug candidates [10]. However, the
full power of genomics can be exploited on-
ly with the introduction of powerful algo-
rithms that use all available genome-de-
rived information for novel drug target
identification.

Based on the results obtained in S. cere-
visiae, here we propose a general scheme
for putative drug target identification
based on genomic data. Following the iden-
tification of most – or all – open reading
frames (ORFs), which is now accomplished
for hundreds of microorganisms, there are
two prerequisites for the utility of our com-
putational method. The first requirement is
the identification of functional class lethal-
ity factors, for which both the assortment of
ORFs into functional classes and represen-
tative deletion phenotyping within these
groups are needed. Although by no means
trivial, an increasing number of computa-
tional methods for assigning protein func-
tion are available [4, 20–22], while single
gene deletion phenotyping can now be rel-
atively quickly accomplished by RNA inter-
ference analysis [23, 24].Also, the function-
al class lethality factor values may be highly
similar among closely related microorgan-

3,543 yeast genes for which both deletion
phenotype and functional classification are
known. Using the predicted probabilities
from their algorithm (both independently
and in the two combined methods),Jeong et
al. listed these genes in decreasing order of
likelihood to be essential. They then com-
pared these probabilities with reality. The
�max method places 48.3% of all the known
essential genes into the top 20% of the
lethality list. In other words, half of those
genes that really were essential showed up in
the highest fifth of the list of likely candi-
dates. Meanwhile, only 3% of the essential
genes were incorrectly placed in the bottom
20% of the list. Jeong et al. find that �max of-
fers the best predictions, but the individual
data sets all do roughly as well as one anoth-
er (table 1, p. 28); hence this method should
be useful even if just one dataset could be
obtained.

As another test, they used the method to
predict the essentiality of 113 yeast genes
that were not yet (as of April 2001) deposit-
ed in the SGD database.The deletion pheno-
types of these genes were, however,
determined in other non-systematic exper-
iments and this data was collected by the
YPD/Proteome database.Again,the predict-
ed �max for these 113 genes compares well
with the experimental data. Of the first
twelve genes – those with the highest �max

values – nine turned out to be either lethal or
to induce serious growth defects.Only three
lethal genes appeared elsewhere on the list.

All of this suggests that this manner of
predicting gene essentiality may offer a
practical means for putting some of the
emerging genomics and proteomics data to
work in identifying drug targets.As Jeong et
al. point out, the search for antibiotic or an-
tifungal drugs over the past two decades has
focused on ‘well-known compound classes
that are active against a standard set of drug
targets’. The advent of genomics offers
means to expand the range of targets, espe-
cially if one can produce mathematical algo-
rithms that can identify targets automati-
cally by bringing together a wide variety of
genomic information.

Mark Buchanan

Jeong/Oltvai/Barabási

Synopsis
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isms, potentially allowing the establish-
ment of a value range for each functional
class. The second requirement is the gener-
ation of a series of global gene expression
measurements on wild-type cells or on vi-
able deletion mutants, possibly in conjunc-
tion with systematic protein interaction 
data.

While the method proposed here is by
nature probabilistic, i.e. it offers the likeli-
hood of essentiality of a given gene prod-
uct, nevertheless it clearly indicates the
utility of inferring functionally relevant
correlations from the available genomic
databases for systematic drug target identi-
fication. The further improvement of com-
putational algorithms, the increasing avail-
ability of systematically collected biologic
data, and a better understanding of dy-
namic [25, 26] and biologic noise effects
[27, 28] are likely to significantly enhance
the role of such methods in drug discovery.

Methods
Microarray analysis
We used the ‘control_expts1-63_ratios. txt’ and

‘data_expts1-300_ratios.txt’ files from the data pack-
age that is publicly available at http://www.
rii.com/tech/pubs /cell_hughes.htm [10]. Of the sec-
ond (300) set, 13 expression profiles represent treat-
ment of wild-type yeast cells with various chemical
compounds, the other 287 represent single gene dele-
tion mutants grown under the same steady-state
conditions as wild-type yeast cells. Two hundred and
seventy-six of these are from mutants that are viable
in the absence of the deleted gene product, but a
number of these also possess secondary genetic
aberrations [29], resulting in 251 mutants with no
known additional genetic change (‘251 gene deletion’
set). The relative changes in gene expression level of
gene i under experiment j is defined as �eij � (eij –
ei

0)/ei
0 = eij/ei

0 – 1, where ei
0 is unperturbed gene lev-

el. From this we calculated the standard deviation

of �eij over Nj = 251 and 63 experiments, where 

is the average change in the expression for gene i.
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Protein Interaction Map Analysis
Using the results of the two hybrid method of

Uetz et al. [11], we assigned to each gene i the num-
ber of interactions ki its protein product is known to
participate in.

Determining L(R) Curves
For each module Y = 1,…,43, we determine the

L(R) curves following the same 5 steps: (a) rank the
genes based on �251, �63 or k; (b) assign a �i = 0,1
variable to each gene i whose lethality is known;
(c) determine the LY(R) curve by summing �i start-
ing from the gene with the highest ranking R = NY,
moving towards R = 1. The obtained LY(R) curves
starts at the (NY, 0) point and ends at (0, fYNY) coor-
dinates; (d) normalize the LY(R) curves by dividing
the x-axis with NY and the y-axis with fYNY for each
functional class, and (e) after normalization, fit a
third-order polynomial Lx(r) = axr

3 + bxr
2 + cxr + 1 to

the obtained curve, where the subscript x stands for
either of �251,�63, or k. The coefficients for each func-
tional class are shown in table B, Supplementary Ma-
terial.The functional classes 1,4,14,19,20,24,26 and
40 contain fewer than 8 lethal genes, thus individual
fitting was not reliable. For these we used the average
lethality curves, shown in figure 1c. Consequently, for
the genes belonging to these classes the confidence
level of the predictions is lower than for the genes in
the remaining 35 classes. As the dominant contribu-
tion to � is given by the functional classes, i.e. fY , the
difference is not substantial.

Predicting Lethality
For each functional class Y we rank ordered all

genes based on �251, �63, or k (if known), whether
their phenotypic effect is known or not. Using eq. 4
we calculate �, the lethality probability for each gene
i with rank R. The results are summarised in table C,
Supplementary Material.

Supplementary Material
This material is available on our designated web-

site (http://www.nd.edu/�networks/cell).
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Algorithm for predicting gene deletion phenotypes

Consider an arbitrary functional class Y, which has NY genes with known phenotypic effect, and of
which a fraction fY = Nlethal/NY are essential. The genes in this class can be ranked based on σ251, σ63, or k
(fig. 2). While we use σ as the ranking variable to introduce the key expressions, the results can be readily
generalized for k as well. Let us denote by PY(σ) the probability that a gene within functional class Y has
standard deviation equal to σ. The rank R of a gene with standard deviation σ is defined as

R = NY PY(σ ' )σ '<σ∑ , (1)

This σ based ordering assigns to the gene with the lowest (largest) σ the ranking R = 1 (R = NY). The Lσ(r)
curve shown in figure 1b is obtained by assigning δ = 0,1 (essential, nonessential) to each gene within Y
based on their known phenotypic effect, plotted in function of the reduced ranking variable r = R/NY.
Denoting with ρ(r) the probability that a gene with ranking r is essential, the Lσ(r) curve can be written as

Lσ(r) ~ ρ(r)∫ , which implies that the probability
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Note that by using fY in the normalization (3), we automatically include the functional class’ overall
phenotypic fraction given by figure 1a. If Lσ(r) is known, (4) can be used to determine the probability
that a given gene product is essential. For this we fit with a third-order polynomial the Lσ

Y(r) curves
obtained for each functional class, as shown in figure 1c for the averaged data. The coefficient of the
polynomial fit for each functional class is given in Supplementary Material.

Appendix 

Table 1. Quantitative comparison between the predictions offered by the three datasets and
the combined �max and �product methods

The first column shows the percentage of all the genes that are known to be essential that are
in the top fifth of our lethality list, predicted by the five different methods. For example, of all
824 genes known to be essential, the �max method selects 48.3%, i.e., 398 of them in the first
20% of the lethality list. The second column shows the same quantity in the bottom fifth of the
list, indicating, for example, that only 3% (n = 25) of the known essential genes are among the
predicted least essential ones. All figures are percentages.

Lethal genes Lethal genes
relative to total lethal numbers relative to total lethal numbers
in the first 20% in the last 20%

ρmax 48.3 3.0
ρσ251 46.5 2.4
ρσ63 42.7 3.5
ρk 42.5 4.5
ρproduct 45.5 2.3


