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The purpose of this paper is to generalize the concept of supertrack functions (STF), to sketch the main lines of a renormali-
zation theory for STF and to obtain a scaling relation yielding nth order windows in the chaotic domain for a large class of one-

dimensional maps.

The concepts of supertracks (ST) and supertrack
functions (STF) were introduced by Oblow in a very
interesting paper [1]. They refer to orbits starting
from the maximum point of a one-dimensional map
and proved to be quite useful in investigating the
chaotic behaviour of, for instance, the quadratic map
F(Z, x)=/x(1—=x). It is however to be noted that
ST and STF can be found, under different names,
also in other works (e.g. refs. [2,3]) which use them
to explain boundary shadings or, alternatively, peaks
of probability distributions, in plots of chaotic
attractors.

We found that the definition of the Oblow super-
track functions can be extended to a larger class of
one-dimensional maps and that they can also be used
to calculate the position of a subset of the periodic
windows of an arbitrary order inside the chaotic re-
gime. This can be obtained by means of scaling re-
lations resulting from a renormalization scheme, the
main lines of which we present in the remaining part
of this paper.

We consider maps of the interval of the same type
as those in refs. [4] and [5]. We write them in the
general form

Kn+1 =F(;\,, xtr}=’?-f(xn) (l)

and remind the essential properties of functions f(x):
(a) f(x) is C° single-valued, piecewise C' on [0,1]
and strictly positive on (0,1), f(0)=f(1)=0; (b)
f(x) has either a unique maximum or attains its
maximum on a subinterval of (0,1); (¢) whenever
f(x) =frae [ (x) exists and is equal to zero; (d) a
Ao exists such that for <A = 1/fmae £F(4, X) has
only two fixed points, of which one is the origin, and
both are repellent.

For functions satisfying conditions (a) to (d), it
was shown in ref. [4] that there exists an infinity of
periodic windows. It would be thus useful to have a
simple method giving the position of at least some
of these windows. We will show in the following how
this problem can be solved with the help of STF.

Among the various orbits of one dimensional maps,
of particular interest are the superstable ones. These
are orbits including the maximum point of the map,
F(xt), ;

The nth order STF is defined "by means of
F"(i, x*), the nth iterate of x* as function of A, as

5, (1) =F"(, x*) . (2)

For the quadratic map, F(x, 1) =4Ax(1—x), this leads
to the Oblow expression
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Sna1(2) =45, (A) [1=5,(4)] .

For general maps, the first three STF are
So(A)=x%, $51(2) =2(x*) =fnax »
52(4) =M (Mfnax) - (3)

The STF have some remarkable properties:

(1) The intersection of 5,,(4) with s,(2) gives the
position A, of the superstable point of the nth order
periodic window as solution of the equation

Sn("ln) =S0(’1ﬂ) )

(2) By means of eq. (2) we get a simple relation
between STF of different orders:

Sn+l()*}=F(’1>Sn(’1))- {4)
(3) STF satisfy
Sy (Ama)=0 fornz=2, (5)

a relation which is easy to obtain taking into account
that

Sl{jvmax}:]-: SZ(Amax}:’lmaxf(l}=0'

(4) The general expression of the derivative of a
STF at A4,,,, 18

(d‘s‘n+:’<-“!d}-)im“ — (.Jfl ;"maxjk{dsnf’d’l)
:(f‘!ffmax}k(dsnfd}'}fimu (6}
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for n=2 and with fi=(df (x)/dx),_¢.

STF or order n have a very complicated structure
(see our fig. 1 and figs. 2 and 3 in ref. [1]). How-
ever, the whole picture still retains a character of
universality in that their general appearance is sim-
ilar near the point /... To see this (fig. 2) we can
choose, for instance, an s5,>2 and notice first that
each such 5,(2) has a last part, between A,,_-» and A,
where it increases from 5,(4,_») to s;(2,_,) falling
down afterwards 10 5,,( 2. ), 1.€. to zero. If we now
iterate s5,(4) to get 5,,,(24), we notice that:

(a)at Z,,_, $,+,(4) and s,(4) have the same
value;

(b) at A,,. the intersection point of 5,{4) and s5,(4),
Spa1(A) 1s maximum;

(¢) at Amaxs Snv1 (Amax) =0.

It appears therefore that s,,,(2) has the same
shape for Ae (4,_,. A,.,) as has s,(A) for Ae(4,_»,
Amax ). Dut slightly compressed, with the compression
factor 4,,., given by

;-max_j-n—_'-' (?)

An+1 = ;L +
max —4An—1

We can express this in a more compact way by means
of a shift § with respect to 2 ..

-gu(‘;-max —ﬂ} =841 (Amax — ﬁf{An+ 1) .

After k iterations we thus obtain

X

i 2

max

Fig. 1. The 8th order supertracks for the logistic map compared to the supertracks of orders 0, 1 and 2.
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Fig. 2. The behaviour of supertracks of orders nand n+1 near 4.

Sr’r{’q'mzlx_'3):Sn+k(;'-max_lg ljllAn-H-) ) . {8)

One notices a slight difference in the values of the
maxima but this cancels in the limit of large # due
to the rapid convergence of 1, to i,,,,. This scaling
can be described as a two-step process leading to the
definition of a general function B. We start from
5, (A max— B) and then (i) form

Sn+1 (-';-max _ﬂ) =i (‘J'max = ﬂ)f{sn{;'max _ﬁJ ) )

(i1) rescale

S+ (’:l'max = ﬁ) _’Sn+ I (Ama.‘: _ﬂx‘fAn+ l) b
Let us denote by B, the set of operations (i) and
(ii),
by (Amax — }9) =Bn[5n(;-max _ﬁ} ] -
We notice that (i) is s-independent and (ii) is
asymptotically n-independent.
Numerical results indicate that the sequence {4, }

converges to a limit A and, consequently B,— B. One
can now see that

lim Br[sn[;“max T ﬂ) ] ‘:S*(;"max ""ﬁ) £}

A >1.

where 5% (4 .«— f) is the solution of the functional
equation

sE=B(5%) .

B(s*) is thus a general function since it is indepen-
dent of n, but one cannot consider it as universal due
to its dependence on the function fitself.

To calculate A we Taylor expand s,,(4) and 5, . (4)
near A

= (=1Y (ds, (A
52O —B)= Y, ( ﬂl) ﬁ_,(d L;{f )) : (9)
=1 z b Amax

sn+k(;"rnax_ﬁ/'4n+k)
_ 2 (=B Y (W)
=X ()( ax ); LER)

k
5
An+k: 1—[ A:'H-.“
i=1

Now, using relations (8)-(10), keeping only linear
terms and by means of eq. (6), one obtains

(.fl){fman }RKA:+;\- =1

For large n, one can write A, =4, 2=...=4, 50
that A=f,/frax
In this way, one can write eq. (6) in the form

(d-gn(f‘-)r;dl)imax:/rrhlfmax' {]])
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Table 1

Function Soax 1 A=filfrax Computed Order of the

periodic window

Q(x) 1/4 1 4 4.001 22

S(x) 1 . T 3.141 13

C(x) 83/64 9 9.128. 9.2 7

L{x) 1 1/e 222 2.3 7

One also can approximate the value of 1, by
;;R~ATHEIK—A i (12)

The value of /1 computed for the same test func-
tions as in ref. [4] is given in table 1. To compute
A we have always considered the last of the periodic
windows of the order specified in the last column.
(One can see that the larger the order of the periodic
window, the better the precision of the computed
value.)

One easily notices that the last nth order window
corresponds to a U-sequence (cf. ref. [4])
P,=RL"?, Calculating 4, for the logistic curve for
windows of the type P,=RL" >R corresponding to
the intersection of the last increasing part of s,(4)
with s,(1) shows that it converges to the same A as
described in eq. (11).

An important observation one can make is related
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to the fact that A,,, corresponds to a crisis point.
Therefore. one could say that whenever a crisis is ap-
proached, scaling relations of the same type as above
should hold, with possibly different values of 4. It
would be thus of interest to calculate the factors af-
fecting A in such cases, which we intend to do in a
further paper.

References

[1] E.M. Oblow, Phys. Lett. A 128 (1988) 406.

[2] ). Eidson, S. Flynn, C. Holm, D. Weeks and R.F. Fox, Phys.
Rev. A 33 (1986) 2809,

[3] R.V. Jensen and C.R. Myers, Phys. Rev. A 32 (1985) 1222,

[4] N. Metropolis, M.L. Stein and P.R. Stein, J. Combinatorial
Theor. A 15 (1973) 25.

[5] M.J. Feigenbaum, J. Stat. Phys. 19 (1978} 25; 21 (1979)
669.



