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Machine learning prediction of the degree of
food processing

Giulia Menichetti 1,2, Babak Ravandi 2, Dariush Mozaffarian 3,4 &
Albert-László Barabási 2,5,6

Despite the accumulating evidence that increased consumption of ultra-
processed food has adverse health implications, it remains difficult to decide
what constitutes processed food. Indeed, the current processing-based clas-
sification of food has limited coverage and does not differentiate between
degrees of processing, hindering consumer choices and slowing research on
the health implications of processed food. Here we introduce a machine
learning algorithm that accurately predicts the degree of processing for any
food, indicating that over 73% of the US food supply is ultra-processed. We
show that the increased reliance of an individual’s diet on ultra-processed food
correlates with higher risk of metabolic syndrome, diabetes, angina, elevated
blood pressure and biological age, and reduces the bio-availability of vitamins.
Finally, we find that replacing foods with less processed alternatives can sig-
nificantly reduce the health implications of ultra-processed food, suggesting
that access to information on the degree of processing, currently unavailable
to consumers, could improve population health.

Unhealthy diet is a major risk factor for multiple non-communicable
diseases, from obesity and type 2 diabetes to coronary heart disease
(CHD) and cancer, together accounting for 70%ofmortality and 58%of
morbidity worldwide1,2. Traditionally, consumers rely on food
category-based dietary recommendations like the Food Pyramid
(19923) or MyPlate (20114), which define the mix of fruits, vegetables,
grains, dairy, and protein-based foods that constitute a healthy diet. In
recent years, however, an increasing number of research studies and
dietary guidelines have identified the important role and separate
health effects of food processing5–10. Observational studies, meta-
analysis, and controlled metabolic studies suggest that dietary pat-
terns relying on unprocessed foods are more protective than the
processing-heavy Western diet against disease risk11,12. The role of
processed food has reached food policy and is now embodied in sev-
eral expertise-based food classification systems used in cohort studies
such as EPIC13,14, and led to the expansion of food description and
ontology systems such as LanguaL15, FoodEx216, and FoodOn17. This

literature indicates a shift from food security, which focuses on access
to affordable food, to nutrition security, which emphasizes the need
for wholesome and healthful foods18. However, known limitations of
the current food processing classification systems prompted scientists
to advocate for amore objective definition of the degree of processing
based on the underlying biological mechanisms rather than on quali-
tative definitions from different research groups, which challenge the
reproducibility of scientific results13,19. These observations also align
with the growing demand for high-quality and internationally-
comparable statistics powered by AI and led by the Food and Agri-
culture Organization (FAO)20, as a way to implement and promote
objective metrics, reproducibility, and informed decision-making,
advancing the convergence towards the United Nations Sustainable
Development Goals (SDGs)21.

NOVA22–24 is a classification systemwidely used in epidemiological
studies, assessing the extent and purpose of food processing. It cate-
gorizes individual foods into four broad categories: unprocessed or
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minimally processed (NOVA 1), like fresh, dry, or frozen fruits or
vegetables, grains, legumes, meat, fish, and milk; processed culinary
ingredients (NOVA 2), like table sugars, oils, fats, and salt; processed
foods (NOVA 3), like canned food, simple bread, and cheese; and ultra-

processed products (NOVA 4), industrial formulations typically of five
or more ingredients including substances not commonly used in
culinary preparations, such as additives whose purpose is to imitate
sensory qualities of fresh food. Examples of ultra-processed foods

ba

c

d

Fig. 1 | Foodprocessing and nutrient changes (FoodProX). a, b Ratio of nutrient
concentrations for 100g of Sauteed Onion and Onion Rings compared to Raw
Onion, indicating howprocessing alters the concentration ofmultiple nutrients. All
nutrients in excess of at least two orders of magnitude compared to the con-
centrations found in the raw ingredient are shown in red. c, d We trained Food-
ProX, a random forest classifier over the nutrient concentrations within 100 g of
each food, tasking it to predict its processing level according to NOVA. FoodProX

represents each food by a vector of probabilities {pi}, capturing the likelihood of
being classified as unprocessed (NOVA 1), processed culinary ingredients (NOVA
2), processed (NOVA 3), and ultra-processed (NOVA 4). The highest probability
determines the final classification label, highlighted in a box on the right. The
results shown are for an input list of 99 nutrients. Source data are provided in
Source Data Figure 1a–d.xlsx.
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include packaged breads, cookies, sweetened breakfast cereals, mar-
garines, sauces and spreads, carbonateddrinks, hot dogs, hamburgers,
and pizzas.

Epidemiological studies have documented significant associa-
tions between greater consumption of NOVA 4 and disease onset25–31,
including links to obesity32, CHD30,33, diabetes mellitus34,35, cancer29,36,
anddepression28. Finally, a randomized controlledmetabolic trial in 20
adults has confirmed the short-term adverse effects on caloric intake
and weight gain of ultra-processed foods31.

Despite its success, NOVA is qualitative in nature, aiming to
address a laborious and incomplete classification task, hence
resulting in inconsistencies and ambiguities across the literature19,
and limiting research into the impact of processed food19,37,38. First,
NOVA relies on expertise-based manual evaluation of each food,
and assigns a unique class to only 35% of the foods cataloged by the
US Department of Agriculture (USDA), decomposing the remaining
part of the database in ingredients to be further analyzed (Sec-
tion S1). Second, the classification of composite recipes, products,
and mixed meals including different types of processed items - a
large proportion of the food supply—is not straightforward. Whilst,
an accurate ingredient list of all complex foods would allow for an
ingredient-based classification, a full and quantified ingredient list
is seldom, if ever, available to the consumer, and when available, it
shows considerable variability from database to database. Inter-
estingly, even in presence of detailed ingredient information, the
consistency across nutrition specialists in assigning NOVA classes
was found to be low38. Given the lack of well-regulated data on food
labels indicating food processes and their purpose, current
approaches have classified as ultra-processed all foods with at least
one ingredient rarely used in kitchens or with at least one cosmetic
additive19,39, hence unable to discriminate such foods in relation to
health outcomes40,41. Third, all the observed risk for the NOVA
classification is in the NOVA 4 class, representing a large and het-
erogeneous category of ultra-processed food that limits our ability
to investigate the health implications of different gradations of
processing. Indeed, according to NOVA, many nations derive up to
60% or more of their average caloric intake from ultra-processed
foods41–43. While NOVA allows for a more refined analysis, epide-
miological and clinical studies have only focused on NOVA 4 as a
whole. These perceived homogeneity of NOVA 4 foods limits both
scientific research and practical consumer guidance on the health
effects of differing degrees of processing. It also reduces the
industry’s incentives to reformulate foods towards less processed
offerings, shifting investments from the ultra-processed NOVA 4
foods to the less processed NOVA 1 and NOVA 3 categories.

Here, we introduce FoodProX, a machine-learning classifier that
takes as input nutritional measures, and is trained to predict the
degree of processing of any food in a reproducible, portable, and
scalable fashion. We rely on nutrients as input because: (1) The list of
nutrients in a food is consistently regulated and reported worldwide;
(2) Their quantities in unprocessed food are constrained by physio-
logical ranges determined by biochemistry44; (3) Food processing
systematically and reproducibly alters nutrient concentrations
through combinatorial changes detectable by machine learning
(Fig. 1a, b). FoodProX allows us to define a continuous index (FPro) that
captures the degree of processing of any food, and helps us quantify
the overall diet quality of individuals, ultimately unveiling the statis-
tical correlations between the degree of processing characterizing
individual diets and multiple disease phenotypes.

Results
The manual procedure behind NOVA, relying on the ingredients of
food, has allowed straightforward labeling to 2484 foods reported in
the National Health and Nutrition Examination Survey (NHANES)
2009–2010, representing 34.25% of items consumed by a

representative sample of the US population26 (Section S1). The
remaining foods are either not classified, or require further decom-
position into their differing food ingredients, oftennot reportedby the
manufacturers. In contrast, the basic nutrient profile of foods and
beverages is always disclosed, andmandated by law inmost countries.
For example, the USDA Standard Reference database (USDA SR
Legacy), catalogs the nutrient profile of 7793 foods with resolutions
ranging from 8 to 138 nutrients (Figure S1)45, and USDA FNDDS reports
between 65 to 102 nutrients for all foods consumed by NHANES
participants46,47.

Our work relies on the hypothesis that the nutrient profiles of
unprocessed or minimally processed foods are generally constrained
within common physiologic ranges44. The nutrient profile can be
widely altered by the physical, biological, and chemical processes
involved in food preparation and conservation, thus correlating with
the degree of processing undertaken. Indeed, among the nutrients
reported in rawonion, 3/4 change their concentration in excess of 10%
in the fried and battered version of the product, andmore than half by
10-fold (Fig. 1b). We lack however, a single nutrient “biomarker” that
accurately tracks the degree of processing; instead we observe chan-
ges in the concentration of multiple nutrients, whose combinations
jointly correlate with processing. This complexity advocates for the
use of machine learning, designed to capture the combinatorial
explosion of nutrient alterations.

FoodProX algorithm
To train FoodProX, amulti-class random forest classifier, we leveraged
the nutrient concentrations provided in FNDDS 2009–2010 for the
foods classified in ref. 26 (Fig. 1d). FoodProX takes as input the list of
nutrients in any food and offers as output a vector of four probabilities
{pi}, representing the likelihood that the respective food is classified as
unprocessed (p1, NOVA 1), processed culinary ingredients (p2, NOVA
2), processed (p3, NOVA 3), and ultra-processed (p4, NOVA 4). The
highest of the four probabilities determines thefinal classification label
for each food (Fig. 1c, d).

As 90% of foods in the USDA Branded Food Products Database
report less than 17 nutrients, we also tested the algorithm’s predictive
power with the 12 gram-based nutrients mandated by the FDA48 (Sec-
tion S1). To evaluate the performance of FoodProX we measure the
area under the receiver operating characteristic (AUC), defined as the
probability that a random sample from the class of interest will have a
higher score than a random sample from any other class. We identified
consistently high AUC values across all the considered nutrient sub-
sets: 0.9804 ± 0.0012 for NOVA 1, 0.9632 ±0.0024 for NOVA 2,
0.9696 ± 0.0018 for NOVA 3, and 0.9789 ± 0.0015 for NOVA 4, sig-
nificantly far from a random performancewith AUC=0.5, describing a
model with no discriminating power (see Section S2.1, Figure S5, and
Table S6 for a detailed analysis of the cross-validated performances,
including precision and recall). These results confirm that changes in
nutrient content have remarkable predictive power in capturing the
extent of foodprocessing. Furthermore, we find that no single nutrient
drives the predictions, but the predictive signal is rooted in combi-
nations of changes spanning multiple nutrients (see Section S2.2 for a
detailed permutation feature importance and Shapley value
analysis49).

We visualize the decision space of the classifier by performing a
principal component analysis over the probabilities {pi}, observing
that the list of foods manually classified by NOVA is limited to the
three corners of the phase space, to which the classifier assigns
dominating probabilities (Fig. 2a). We used FoodProX to classify all
foods and beverages that lacked prior manual NOVA classification in
FNDDS (65.75% of the total). We found that 7.39% of FNDDS consists
of NOVA 1; 0.90%, NOVA 2; 18.36%, NOVA 3; and 73.35%, NOVA 4
foods (Fig. 2b). Yet, many previously unclassified foods are often
inside the phase space, indicating that they lack a dominating
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probability, hence the assignment of a single NOVA class is somewhat
arbitrary (Fig. 2b). The detection of this ambiguity is a strength of
FoodProX, reflecting the observation that a four-class classification
encodes a great extent of nutrient variability associated with differ-
ent food processing methods and intensities50. For example, while
the classifier confidently assigns “RawOnion” toNOVA 1 (p1 = 0.9651),
and “Onion rings prepared from frozen” (p4 = 0.9921) to NOVA 4, it
accurately offers an intermediate confidence for “Onion, Sauteed,”
placing it with probability p4 = 0.6521 in NOVA 4, andwith probability
p3 = 0.2488 in NOVA 3.

Food processing score (FPro)
The observation that enforcing discrete classes causes inherent chal-
lenges in food classification prompted us to introduce the food pro-
cessing score (FPro), a continuous variable with FPro = 0 for raw
ingredients, and FPro→ 1 for ultra-processed foods. We define the FPro
of a food k as

FProk =
1� pk

1 +p
k
4

2
, ð1Þ

a NOVA Manual Classification

Onion rings
from frozen

Onion rings
from fresh

Onion, fried,
sauteed

Onion, boiled,
from frozen

Onion, boiled,
from fresh

Onion, raw

b Random Forest Classification

Onion rings
from frozen

Onion rings
from fresh

Onion, fried,
sauteed

Onion, boiled,
from frozen

Onion, boiled,
from fresh

Onion, raw
0

1

c
Onion rings
from frozen

Onion rings
from fresh

Onion, boiled,
from frozen

Onion, boiled,
from fresh

Onion,raw

FPro

FPro

d

FPro=0.5658        FPro=0.5685

Post Shredded 
Wheat’n Bran

Post Shredded 
Wheat Post Grape-Nuts Post Honey Bunches 

of Oats with Almonds

FPro=0.9603 FPro=0.9999

Onion, fried
sauteed
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capturing the progressive changes in nutrient content induced by
processing (see Box 1). In other words, the FPro score measures the
trade-off between the confidence that the FoodProX algorithm has in
classifying food item k as NOVA 1 (pk

1 ) or NOVA 4 (pk
4), which are the

two extreme classes clearly ranked according to an increasing extent
of food processing19,51. For example, FPro incrementally increases from
raw onion (FPro = 0.0203) to boiled onion (FPro =0.3126), fried onion
(FPro =0.7779), and onion rings from frozen ingredients (FPro =
0.9955, Fig. 2c). FPro allows us to unveil the degree of processing
characterizing different food preparation techniques, assigning lower
values to foods made from fresh ingredients than those made from
frozen ingredients (Fig. 2c). FPro also permits classification of complex
recipes andmixed dishes, identifying the overall average processing of
the item or meal.

As noted above, nearly 20% of the US diet comprises foods in
NOVA 3, and over 70%, in NOVA 4. The observed variability of FPro for
foods that belong in the same NOVA class prompted us to analyze the
variations in degree of processing within subgroups of foods and
beverages, as captured by the What We Eat in America (WWEIA)
categorization52. We find that different food products within the same
NOVAclassification andWWEIAcategories show remarkable variability
in FPro, confirming the presence of different processing fingerprints
within each category (Fig. 2d). For example, if we select four products
from the same brand (Post) of breakfast cereals that are all manually
classified as NOVA 4 (i.e., considered identically processed), we
observe that FPro differentiate them and captures progressive altera-
tions in fiber content, fortification with vitamins and minerals, and
addition of sugar and fats (Fig. 2d, insert, and Section S2.5).

Stability and robustness of FPro
Real-world foods vary in nutritional content, affected by recipe varia-
tions, production methods, soil quality, storage time, and changing
government regulations53. This degree of variability, coupled with
measurement and reporting uncertainties, raises a fundamental
question: is FPro robust against the expected variability and uncer-
tainty in nutrient content? To address this, we first explored how
nutritional values for the same food change through different FNDDS
cycles, focusing on the 5,632 foods whose nutrient profile is reported
both in FNDDS 2009–2010 and 2015–2016 (Section S7). For example,
in the less processed category, for “Milk, calcium fortified, cow’s, fluid,
whole”we find that 14 nutrients have changed between 2009 and 2015,
including a 3.65-fold decrease in Calcium content. In a similar fashion,
the highly ultra-processed “Cookie, vanilla with caramel, coconut, and
chocolate coating” shows variation in 46 nutrients, with 6 fold
decrease in monounsaturated fatty acid 20:1. Despite such significant
changes in the content of some nutrients, FPro shows remarkable
stability: milk’s FPro goes from 0.0010 to 0.0011, consistently

classifying it as unprocessed, and for the cookie FPro goes from0.9943
to 0.9965, staying firmly in the ultra-processed category. Overall, for
foodswhosenutrientsmaximally changebetween 10%and50%of their
original value, we observe an absolute shift in FPro of 0.001556
(quartiles Q1(25%) = 0.000222, Q3(75%) = 0.004764). Allowing up to
1000% of nutrient variability does not significantly alter our findings,
since the expected change of FPro per food reaches 0.003312 (quar-
tiles Q1(25%)= 0.000722, Q3(75%)= 0.011310). The observed FPro sta-
bility is rooted in the fact that FPro’s value is driven by the nutrient
panel as a whole, and not by the concentration of any single nutrient
(see Section S7, for further details on data sampling and variability).

Currently, the chemical information available to train FPro does
not track the concentration of additives as they are rarely available
for most foods. Yet, additives like tertiary butylhydroquinone,
acetylated monoglycerides, polysorbates, sodium stearoyl lacty-
late, and sodium aluminum phosphate, represent obvious sig-
natures of food processing54, raising the question on how much
improvement in predictive power we could obtain if the informa-
tion on additives would be available. We, therefore, relied on Open
Food Facts, that compiles an extensive list of food additives,
including artificial colors, artificial flavors, and emulsifiers55, to test
the FPro’s ability to absorb information on additives. From the
Open Food Facts website we collected 233,831 nutritional records,
annotated with NOVA labels according to a heuristic described in
ref. 56. We then trained and validated two models: (1) FoodProX
leveraging only nutrition facts as introduced before, (2) a modified
FoodProX, using nutrition facts and the available information on
the number of additives (Section S6). While model (2) displays
slightly better performance, with AUC 0.9926 ± 0.0003 for NOVA
1, 0.9878 ± 0.0047 for NOVA 2, 0.9653 ± 0.0010 for NOVA 3,
0.9782 ± 0.0007 for NOVA 4, we find that the performance of model
(1) is largely indistinguishable, reaching AUC 0.9880 ± 0.0006 for
NOVA 1, 0.9860 ± 0.0045 for NOVA 2, 0.9320 ± 0.0015 for NOVA 3,
0.9508 ± 0.0009 for NOVA 4. In other words, while information on
additives can improve FoodProX’s performance, changes in the
nutrient profile already carry the bulk of the predictive power. This
aspect is further confirmed by the performance of a classifier purely
based on the number of additives: in this scenario the number of
false positives for NOVA 1, 2, and 3 remarkably increases, affecting
the precision of the model, and showing predictive power only for
NOVA 4 (see Section S6 for a detailed comparison of the models).

Finally, we investigate how FPro, a measure of the nutritional
quality of food, changes depending on where the food was prepared,
exploring if it can distinguish between home-cooked food, food pre-
pared in stores, canteens, restaurants, fast foods, and products avail-
able in vending machines. Leveraging data from NHANES, we ranked
the 10 most popular food sources in increasing value of FPro. The

Fig. 2 | NOVA classification and processing score. a Visualization of the decision
space of FoodProX via principal component analysis of the probabilities {pi}. The
manual 4-level NOVAclassification assigns unique labels to only 34.25%of the foods
listed in FNDDS 2009–2010 (empty circles). The classification of the remaining
foods remains unknown, or must be further decomposed into ingredients. The list
of foods manually classified by NOVA is largely limited to the three corners of the
phase space, foods to which the classifier assigns dominating probabilities.
b FoodProX assigned NOVA labels to all foods in FNDDS 2009–2010. The symbols
at the boundary regions indicates that for these foods the algorithm’s confidence in
the classification is not high, hence a 4-class classification does not capture the
degree of processing characterizing that food. For each food k, the processing
score FProk represents the orthogonal projection (black dashed lines) of
p!k

= ðpk
1 ,p

k
2,p

k
3,p

k
4Þ onto the line p1 + p4 = 1 (highlighted in dark red). cWe ranked all

foods in FNDDS2009/2010 according to FPro. Themeasure sorts onionproducts in
increasing order of processing, from “Onion, Raw'', to “Onion rings, from frozen''.
d Distribution of FPro for a selection of the 155 Food Categories in What We Eat in
America (WWEIA) 2015–2016with at least 20 items (Section S2). WWEIA categories

group together foods and beverages with similar usage and nutrient content in the
US food supply52. Sample sizes vary from a minimum of 21 data points for “Citrus
fruits” to amaximumof 340datapoints for “Fish''. For eachbox in theboxplots, the
minimum indicates the lower quartile, the central line represents the median, and
the maximum corresponds to the upper quartile. The upper and lower whiskers
represent data outside of the inter-quartile range. All categories are ranked in
increasing order of median FPro, indicating that within each food group, we have
remarkable variability in FPro, confirming the presence of different degrees of
processing. We illustrate this through four ready-to-eat cereals, all manually clas-
sified asNOVA4, yetwith ratherdifferent FPro. While the differences in the nutrient
content of Post ShreddedWheat 'n Bran (FPro=0.5658) and Post ShreddedWheat
(FPro=0.5685) areminimal, with lower fiber content for the latter, the fortification
with vitamins, minerals, and the addition of sugar, significantly increases the pro-
cessing of Post Grape-Nuts (FPro =0.9603), and the further addition of fats results
in an even higher processing score for Post Honey Bunches of Oats with Almonds
(FPro=0.9999), showing how FPro ranks the progressive changes in nutrient con-
tent. Source data are provided in Source Data Figure 2a–d.xlsx.
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lowest FPro is observed for “Grown or caught by you and someone you
know” (median FPro = 0.4423) and “Residential dining facility” (median
FPro = 0.6238), confirming the less processed nature of home-
prepared foods. We obtain a much higher FPro for “Restaurant fast
food/pizza” (median FPro =0.9060) and “Vending machine” (median
FPro = 0.9800), confirming its reliance on ultra-processed ingredients.
This result indicates that FPro candifferentiate food sources, styles and
quality of food preparation (see Section S2.6 for the statistical
analysis).

Individual processing score
The significant contribution of ultra-processed food to American
dietary intake, and FPro’s ability to demonstrate heterogeneity in the
extent of foodprocessingwithin the broadcategoryof ultra-processed
food, prompts us to assess the contribution of processed food to the

diet of each individual, jointly weighted by both the extent of pro-
cessing and the contribution to caloric intake. This is provided by the
individual Food Processing Score (iFPro),

iFProjWC =
XDj

k

cjk
Cj FProk , ð2Þ

which varies between 0 and 1, where Dj is the number of dishes con-
sumedby individual j,Cj is thedaily total amountof consumedcalories,
and cjk is the amountof calories contributedby each food item.Agram-
based iFProWG, captures the fraction of grams in a diet supplied by
processed food (Eq. S6).

We calculated iFPro for 20,047 individuals with dietary records in
a representative US national sample from NHANES 1999–2006.

BOX 1

Overview of FoodProX and FPro

Schematic overview of the link between FoodProX classifier and FPro score (a) To construct FoodProX, a labeled training dataset with NOVA
classes and input nutrient information per 100 grams is first selected. FoodProX is then created as an ensemble voting system that includes five
random forest classifiers, each trained on 4/5 of the stratified dataset. Food classification predictions aremade based on the average probabilities
per class across the five classifiers. (b) To calculate FPro for a specific food item, an input list of nutrients compatible with the trained FoodProX is
required. For each classifier in the ensemble, FPro is calculated using Eq. (1), which enables us to estimate the average and standard deviation
across the models. For further details see the Methods Section.

Article https://doi.org/10.1038/s41467-023-37457-1

Nature Communications |         (2023) 14:2312 6



NHANES relies on 24-hour recalls to capture dietary intake, a widely
used methodology in epidemiology, with well-explored statistical
characteristics57. Indeed, studies collectingmultiple days of intake data
per individual indicate that it is statistically more efficient to increase
the number of individuals in the sample than increase the number of

days beyond two per individual58. As Fig. 3c shows, themedian iFProWC

for the American population is 0.7872, confirming a high reliance on
intake on ultra-processed food41–43. More importantly, iFPro allows us
to identify differential reliance on processed food. Consider indivi-
duals A and B, men of similar age (47 vs. 48 years old, Fig. 3a–c), with
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similar number of reported daily unique dishes (12.5 vs. 13 dishes) and
comparable caloric intake (2016 vs. 1894 kcal). Yet, the diet of indivi-
dual A has iFProWC =0.3981, as it relies on unprocessed ingredients
and home cooking. In contrast, B has iFProWC =0.9572, given his con-
sumptionof hot dogs, hamburgers, French fries, pizza, andKit Kat (see
Section S3.5 for a full analysis of the correlation between iFProWC and
food group consumption in the US population). As we show next,
these differences correlate with different health outcomes.

Health implications
To quantify the degree to which the consumption of ultra-processed
foods, graded across their entire range, correlate with health out-
comes, we investigated exposures and phenotypes provided in
NHANES 1999–200659. Inspired by ref. 60, we performed an
Environment-Wide Association Study (EWAS), an alternative to single-
exposure epidemiological studies, to identify the most significant
environmental factors associatedwith different health phenotypes in a
non-hypothesis-driven fashion. We measured for each variable the
associationwith the diet processing score iFPro, adjusting for age, sex,
ethnicity, socioeconomic status, BMI, and caloric intake (Figure S17).
After False Discovery Rate (FDR) correction for multiple testing, 209
variables survive (Section S4), documenting how the consumption of
ultra-processed foods relates to health.

Metabolic and cardiovascular risk. We find that individuals with a
high food processing score show positive associations with risk of
metabolic syndrome (MetS), diabetes (fasting glucose), and also
(consistent with poor diets clustering in families) a family history of
heart attack or angina, in linewith earlier findings (Section S4)60–62. The
increased risk of cardiovascular disease is further confirmed by the
significant positive association of iFPro with both Framingham and
ACC/AHA Risk Scores (Fig. 3d)63,64.

Overall, individuals with a higher food processing score exhibit
higher blood pressure, trunk fat, and subscapular skinfold, measures
of obesity, blood insulin, and triglyceride levels; and lower “good”HDL
cholesterol. Further novel findings indicate a higher prevalence of type
2 diabetes (C-peptide), inflammation (C-Reactive Protein), vitamin
deficiency (homocysteine, methylmalonic acid), and inflammatory
arthritis65–70. We also find an inverse association between iFPro and
telomere length, which can be affected by diet through inflammation
and oxidation71, suggesting a higher biological age for individuals with
higher reliance onmore ultra-processed foods (Section S4, Figure S21).

Vitamins and phytoestrogens. A greater consumption of more
extensively processed foods correlates with lower levels of vitamins in
our bloodstream, like vitamin B12 and vitamin C, despite the fact that
ultra-processed breakfast cereals and refined flours are frequently
fortified with these vitamins and minerals. In addition, iFPro allows us
to discriminate plant-based diets relying on legumes, whole grains,
fruits, and vegetables, from diets that include ultra-processed plant-

based meat, dairy substitutes, and plant-based drinks72. For example,
we observe a positive correlation between iFProWC and the urine levels
of daidzein, genistein, and their bacterial metabolite o-desmethy-
langolensin—all bio-markers of soy, abundant in diets that rely on
highly processed soy protein foods. On the other hand, enterolactone
and enterodiol, gut metabolites of plant lignans (fiber-associated
compounds found in many plant families and common foods,
includinggrains, nuts, seeds, vegetables, anddrinks such as tea, coffee,
or wine) are inversely associated with iFProWC

73.

Chemical exposures. Diet rich in highly processed food shows an
association with increased carcinogenic, diabetic, and obesity-
inducing food additives and neoformed contaminants, several of
which represent previously unknown relationships. For instance, we
find positive associations with acrylamide and polycyclic aromatic
hydrocarbons, present in heat-treated processed food products as a
result of Maillard reaction, benzenes (abundant in soft drinks), furans
(common in canned and jarred foods), PCBs (processed meat pro-
ducts), perfluorooctanoic acids and phthalates (found in the wrappers
of some fast foods, microwavable popcorn, and candies), and envir-
onmental phenols like the endocrine disruptor bisphenol A (linked to
plastics and resins for food packaging)74–79. Importantly, all these
represent compounds not reported in food composition databases,
but recovered in blood and urine (Figure S20).

Taken together, our ability to distinguish thedegree of processing
of foods in individual diets allowed us to unveil multiple correlations
between diets with greater reliance on ultra-processing and health
outcomes. This approach leads to results that cannot be capturedwith
the existing NOVA classification (Section S4, Figures S18 and S19).
Specifically, if we rely on the manual NOVA 4 and the panel of expo-
sures in NHANES, we recover only 92 significant associations. Among
the missing associations are the inverse correlation of a more ultra-
processed diet with vitamin D and folate blood levels, and the positive
correlation with c-peptide, homocysteine, and blood pressure
(Section S4).

Food substitution
The high reliance of ultra-processed food among the US population
(Fig. 3c) prompts us to ask: what kind of interventions could help us
reduce the observed health implications? Given the challenges of large
behavioral shifts80,81, here we assume that an individual does not need
to overhaul her entire diet, but replace the most processed items she
consumes with less processed versions of the same item. To minimize
the dietary shifts required, we identify within each individual’s diet the
item with high caloric contribution and for which there are sig-
nificantly less processed alternatives (Eq. S8), preserving the broad
food class (WWEIA) of the initial choice (Section S5). For example, we
replace Kix cereals (FPro =0.9998) with shredded wheat and bran
cereals (FPro =0.5091), and spread cheese from a pressurized can
(FPro =0.9648) with provolone cheese (FPro =0.5001). We find that

Fig. 3 | Health implications and food substitution. For each of the 20,047 indi-
viduals in NHANES (1999–2006), 18+ years old with dietary records59, we calculated
the individual diet processing scores iFProWC. a The average number of unique
dishes reported in the dietary interviews, highlighting two individualsA andB, with
comparable number ofdishes, 12.5 and 13 reported, respectively.bThedistribution
of averagedaily caloric intake, showing that individualsB andA have similar caloric
intake of 1894 and 2016 kcal, respectively. c The distribution of iFProWC for
NHANES, indicating that individuals A and B display significant differences in
iFProWC, with B ’s diet relying on ultra-processed food (iFProWC=0.9572), and A
reporting simple recipes (iFProWC =0.3981) (Figure S13). d We measured the asso-
ciation of various phenotypes with iFProWC, correcting for age, gender, ethnicity,
socioeconomic status, BMI, and caloric intake (Section S4). We report the stan-
dardized β coefficient, quantifying the effect on each exposure when the Box-Cox
transformeddietary scores increase byone standarddeviation over thepopulation.

For continuous exposures the coefficients are fully standardized, while for logistic
regression (disease phenotypes) we opted for partially standardized coefficients to
help interpretability (Section S4). Each variable is color-coded according to β,
positive associations shown in red, and negative associations in blue. For logistic
regressions, p values are associated with two-sided Wald tests, while for multiple
linear regressions, p values are determined by two-sided t tests. Here, we show a
selection of the 209 variables surviving Benjamini-Hochberg FDR correction with
α =0.05 (*** adj p value < 0.001, ** adj p value < 0.01, * adj p value < 0.05) e Changes
in iFProWCwhen one (orange) or up to ten (yellow) dishes are substituted with their
less processed versions, following the prioritization rule defined in Eq. S8. f The
impact of substituting different number of dishes on the odds of metabolic syn-
drome, concentrations of vitamin B12, vitamin C, and bisphenol A, showing that a
minimal substitution strategy can significantly alter the health implications of ultra-
processed food. Source data are provided in Source Data Figure 3a–f.xlsx.
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the isocaloric replacement of a single item from the average of 19.28
food items daily consumed by US adults reduces the median iFProWC

by 12.15%, from an overall score of 0.7872 to 0.6915 (Fig. 3E). Based on
observed associations with phenotypes, this translates to a decrease in
the odds of metabolic syndrome by 12.25%, a lower concentration of
urinary bisphenol A by 8.47%; and an increased blood concentration of
vitaminB12 and vitamin C by 4.83% and 12.31%, respectively (Fig. 3f and
Eqs. S9 and S10). Furthermore, the substitution of 10 food items, about
half the daily reported items, leads to 37.03% decrease in iFProWC, with
associated changes of −21.43% for bisphenol A, +13.02% for blood
vitamin B12, and +37.26% for blood vitamin C.

Overall, we find that modest substitution strategies made
possible by FPro can preserve the general nature of an individual’s
diet but reduce reliance on more highly processed food and suc-
cessfully moderate the observed health implications. As a first step
to implement such strategies in the real world, consumers and
policymakers must be empowered with information on the degree
of processing characterizing the foods in their food environment
available to consume, and their potential alternatives. To success-
fully and sustainably improve population diets, interventions will
need to combine individual nudges and behavior change strategies
with interventions that more precisely address the ecological,
system-level phenomena that people are exposed to, including
addressing major gaps and disparities in life-style and healthy food
access (i.e., nutrition security).

Discussion
In this paper, we introduced FPro, a continuous processing score
combining in non-linear fashion features of processing techniques
learned from the NOVA manual labels, with nutrient concentrations
from food composition data. FPro is derived from FoodProX, a clas-
sifier that shows a remarkable ability to replicate the manual NOVA
classification from nutritional information, confirming that NOVA
classes result in distinct patterns of nutrient alterations, accurately
detected by machine learning.

Importantly, FoodProX allows us to build upon and extend the
current NOVA classification in several crucial respects, offering auto-
mated and reproducible classification of foods across multiple
national and commercial databases, the ability to classify complex
recipes and mixed foods and meals, and the ability to quantify the
extent of food processing among the large and otherwise homo-
geneously categorized groups of ultra-processed foods. Given that our
algorithm only needs the Nutrition Facts, information already acces-
sible to consumers on packaging and via smartphone apps, web por-
tals, and grocery store and restaurant websites, FPro can help monitor
the reliance of an individual’s diet on less or more processed food.
Building on the portability of our model, we were able to extend the
FPro assessment to over 50,000 products collected from major US
grocery store websites, a first step towards a systematic characteriza-
tion of the food environments82.

Differently from dietary indexes such as HEI-1583, designed to
measure the alignment of individuals’ diets with the 2015–2020 Diet-
ary Guidelines for Americans, iFPro and FPro help us identify which
foods to substitute, to shift individual consumption patterns towards a
less processed diet. Our substitution heuristic indicates that minimal
changes in diet can significantly reduce disease risk, a strategy hard to
implement with the current NOVA classification, which classifies >70%
of the food supply as NOVA 484.

The consistent predictive power of FPro in epidemiological ana-
lysis indicates that it offers an accurate global scale of food processing,
capturing the chemical-physical alterations of food and its impact on
health. However, FPro is currently best suited to rank foods within the
same food category, hence offering accurate input for substitution
strategies, as explored above. In other words, we should first identify a
chemically-driven food group (e.g., “Fruit”), and then quantify the

extent of nutrient alterations that leads to different degrees of
processing.

Overall, a combination of FPro with epidemiological studies and
food classification could lead to an automated and practical pipeline
capable of systematically improving population diet and individual
health. Furthermore, the systematic addition of chemical concentra-
tions for additives and processing byproducts in all foods will enable
the construction of an FPro that is completely unsupervised and
independent fromanymanual classification. Awider range of chemical
classes will also enable a progressively better modeling of the "food
matrix effect", capturing the processing and cooking induced trans-
formations in the cellular matrices of plants and muscle tissues.

Methods
Training data
The Food and Nutrient Database for Dietary Studies (FNDDS) is a
database created by the United States Department of Agriculture
(USDA) that provides comprehensive food composition data, such as
the amount of vitamin C per 100 g of a selected ingredient, for foods
and beverages consumed as part of the National Health and Nutrition
Examination Survey (NHANES), which is a biannual cross-sectional
survey conducted by the Center for Disease Control and Prevention
(CDC) to monitor the health of the American population. Unlike the
USDA Standard Reference Legacy (SR) and Foundation Foods (FF),
which are designed to disseminate food composition data, FNDDS is
specifically tailored to facilitate the analysis of dietary intake. As such,
FNDDS contains nomissingnutrient values,making it an ideal resource
for training machine-learning models85. For the years 2007–2010 the
USDA created a flavonoids database that expanded the nutritional
panel of population surveys from the original 65 nutrients to 102. In
our analysis, we focused on all nutrients explicitly measured in grams
(g),milligrams (mg), ormicrograms (μg), resulting in 99 nutrients. This
approach allowed us to focus on a comprehensive set of nutrients
while ensuring consistency and comparability across the different
nutrients.

We selected FNDDS 2009–2010 as the main data source for
training FoodProX because it allowed us to combine the NOVA labels
assigned by Steele et al. in26 with one themost comprehensive nutrient
panels available for population studies. Among the 7253 foods inclu-
ded in FNDDS 2009–2010, 2484 food items were originally categor-
ized under a uniqueNOVA class, while the remaining 4769 foods either
lacked classification (730) or required further decomposition (4039)
into 2946 ingredients obtained from the SR24 database.

The availability of a large nutritional panel in FNDDS 2009–2010
enabled us to train FoodProX using various subsets of nutrients. The
widest panel encompasses 99 nutrients, including flavonoid mea-
surements developed for NHANES 2007–201086. From these 99
nutrients, we selected 62 nutrients that are commonly documented in
NHANES 2001–2018, and 58 nutrients that are available across
NHANES 1999–2018 cycles, which determined the panel used for our
epidemiological analysis utilizing NHANES data from 1999 to 2006.
Furthermore, to address theneedsof the consumer spaceandbranded
products, we trained FoodProX on a specific subset of 12 nutrients that
contribute to FDA nutrition facts. Notably, we excluded calories and
the total amount of trans fatty acids fromthis subset, as the latter is not
available in the original batch of 99 nutrients.

For further details, see Section S1.

FoodProx and FPro
FoodProX is a machine-learning model that leverages a random forest
classifier to predict the classification of a food item based on its
nutrient composition. The model takes as input the log-transformed
nutrient amounts per 100 grams of the selected food, and evaluates its
likelihood of being classified according to the NOVA classification
system. Specifically, FoodProXpredictswhether a food falls intooneof
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four NOVA categories: 1 (unprocessed or minimally processed), 2
(processed culinary ingredients), 3 (processed foods), or 4 (ultra-
processed foods).

To assess the effectiveness and consistency of FoodProX, we
conducted a 5-fold stratified cross-validation on the labeled dataset in
FNDDS 2009–2010. We computed the area under the receiver oper-
ating characteristic curve (AUC) and the area under theprecision-recall
curve (AUP) for 12, 62, and 99 nutrients, and the results were reported
in Table S6. The reported metrics are the average and standard
deviation over the 5 folds. In the main text, we present the overall
performance by averaging the results across all three nutrient panels.

In order to enhance the classifier’s ability to generalize to unseen
data and mitigate over-fitting, we employed two strategies and
retrained FoodProX accordingly. Firstly, we employed the Synthetic
Minority Over-sampling Technique (SMOTE) to address the issue of
class imbalance, which canoften lead to biased predictions (this step is
optional)87. Secondly, we created an ensemble voting system consist-
ing of five classifiers, each trained on 4/5 of the generated dataset. The
final predictions on unseen data are obtained by averaging the outputs
of thefive classifiers (seeBox 1). Byadopting these strategies,we aimed
to improve the performance of FoodProX and ensure its robustness
across different datasets.

The probability vector p!k = ðpk
1 ,p

k
2,p

k
3,p

k
4Þ is of particular impor-

tance as it reflects the level of confidence FoodProX has in assigning
the four NOVA classes to a particular food item k. This vector belongs
to the 4-D probability simplex, which comprises all vectors satisfying
f~p 2 R4,p1 +p2 +p3 +p4 = 1, pi ≥0 8ig: The processing score FProk
defined in Eq. (1) is the orthogonal projectionof p!k over the line going
from the pure minimally processed state ~pMP = ð1,0,0,0Þ to the pure
ultra-processed state ~pUP = ð0,0,0,1Þ, represented by the explicit
equation p1 = 1−p4. Thanks to the ensemble strategy explained above
and illustrated in Box 1, for each foodweestimate the average FPro and
standard deviation.

For further details, see Section S2.

Individual processing score iFPro and cross-sectional analysis
The individual Food Processing Score iFPro is a linear combination of
the FPro scores of each food consumed by an individual, weighted
according to the respective fraction of calories (iFProWC, Eq. (2)) or
grams (iFProWG, Eq. S6) contributed to the diet. Although nutritional
epidemiology research typically relies on a calorie-based score to
assess dietary patterns, a weight-based index takes into account the
consumption of highly processed beverages like zero-calorie soft
drinks, which can have complex effects on health beyond their calorie
content. Additionally, a weight-based index could also factor in food
contaminants whose amount is independent of the number of calories
provided, which can also impact overall health outcomes.

To investigate the relationship between iFPro and population
health, we analyzed data from the NHANES 1999–2006 exposome
and phenome database, which is a harmonized cross-sectional
dataset created by Patel et al.59. This dataset consists of 255 publicly
available data files from four cycles of NHANES, providing infor-
mation on 41,474 individuals and 1191 variables. We focused on
20,047 adults (aged 18+) and calculated iFProWC and iFProWG using
FPro estimates for 58 common nutrients across the selected
NHANES cycles (see Table S4). We stratified the summary statistics
for iFProWC and iFProWG by age, poverty income ratio, sex, race, and
calories consumed, which are presented in Tables S7 and S8. To
calculate the daily average iFPro, we used data from two-day dietary
recalls obtained through in-person and phone interviews. For par-
ticipants who did not complete two-day dietary recalls, we used
data from in-person interviews only. We used survey weights to
ensure the correct relevance of each individual for population sta-
tistics such as for the histograms shown in Fig. 3a–c88,89.

For further details, see Section S3.

Environment-wide association study
The environment-wide association study (EWAS) conducted on the
merged NHANES 1999–2006 cohort, which is publicly available at
ref. 59, aimed to identify and compare environmental factors and
disease-related phenotypes that are strongly associated with iFProWC,
iFProWG, and the fractionof calories contributedbymanualNOVA4. To
achieve this goal, we gathered data on 45 exposure modules in ref. 59.
Additionally, we included one variable to predict diabetes based on
fasting glucose levels ≥126 mg/dL, as recommended by the American
Diabetes Association90, and two variables to predict metabolic
syndrome91. We also included two assessments of the Framingham
Risk Score63,92 and the ACC/AHA Risk Score64, which measure the 10-
year risk of non-fatal myocardial infarction (MI), congestive heart
disease (CHD) death, or fatal or non-fatal stroke.

To identify the most robust signal, we limited our analysis to
variables that were measured in at least two cycles of NHANES (405
variables). We utilized survey-weighted generalized linear models to
quantify the statistical associations, employing linear regression for
continuous variables and logistic regression for categorical variables.
All models were adjusted for age, sex, ethnicity, Body Mass Index
(BMI), total-caloric intake, and estimated Socioeconomic Status (SES),
as provided by NHANES and consistently with90. To account for the
complex survey design of NHANES, we used the ‘survey’ statistical
package in R89. Additionally, wefiltered out categorical and continuous
variables that did not meet a minimum sample size requirement for
regression analysis. Specifically, we considered a ratio between the
number of covariates and the number of data points ≤1/50 for con-
tinuous variables, and a similar threshold for the ratio between the
number of covariates and the number of data points in the smallest
category for categorical variables (Figure S17).

To improve the validity of our measures of association, we
transformed all continuous variables using either the Box-Cox trans-
formation or the logit function (in the case of the Framingham and
ACC/AHA scores) to stabilize their variance60.We then standardized all
continuous variables to place them on a similar scale. For multiple
linear regression, we used fully standardized regression coefficients,
which indicate the number of standard deviations of change in the
dependent variable associated with one standard deviation increase in
the independent variables. In logistic regression, we only partially
standardized the continuous independent variables to maintain a
straightforward interpretation of the relationship between one stan-
dard deviation increase in the Box-Cox transformed iFPro and the
increase or decrease in disease odds93.

To account for false discovery rate, we adjusted the p values cor-
responding to each score using the Benjamini-Hochberg
method with α = 0.05. Our analysis revealed a total of 214 significant
tests across the three methodologies, with 134 significant tests for
iFProWC, 170 for iFProWG, and 92 formanual NOVA 4. The results of our
analysis are summarized in Figures S17–S21. In addition, we compared
our findings with literature results based onmanual NOVA 4, which are
presented in Table S9. The effect sizes calculated in EWAS were the
inputs to the food substitution analysis implemented in Fig. 3f.

For further details, see Sections S4 and S5.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated and analyzed in the study have been deposited on
Zenodo at https://doi.org/10.5281/zenodo.7736993. A detailed source
data file is provided with the manuscript. The publicly available data-
sets used in this study can be found on their associated websites:
FNDDS (https://www.ars.usda.gov/northeast-area/beltsville-md-
bhnrc/beltsville-human-nutrition-research-center/food-surveys-
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research-group/docs/fndds-download-databases/), NHANES (https://
www.cdc.gov/nchs/nhanes/index.htm), NHANES exposome and phe-
nome data (https://github.com/chiragjp/nhanes_scidata), and Open
Food Facts (https://world.openfoodfacts.org/data). Source data are
provided with this paper.

Code availability
The codes that support the findings of this study are openly available
on our GitHub at https://doi.org/10.5281/zenodo.7736993and https://
github.com/menicgiulia/MLFoodProcessing. Python 3.6.10, MATLAB
2022a, and R (version 4.0.3 – 2020-10-10) were used for data analysis
and visualization. The R Survey package (version 4.0) was used to
incorporate survey weights in all analyses. No software was used for
data collection.
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