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The impact of a scientific publication is often measured by the number of citations
it receives from the scientific community. However, citation count is susceptible to
well-documented variations in citation practices across time and discipline, limiting
our ability to compare different scientific achievements. Previous efforts to account
for citation variations often rely on a priori discipline labels of papers, assuming that
all papers in a discipline are identical in their subject matter. Here, we propose a
network-based methodology to quantify the impact of an article by comparing it with
locally comparable research, thereby eliminating the discipline label requirement. We
show that the developed measure is not susceptible to discipline bias and follows a
universal distribution for all articles published in different years, offering an unbiased
indicator for impact across time and discipline. We then use the indicator to identify
science-wide high impact research in the past half century and quantify its temporal
production dynamics across disciplines, helping us identifying breakthroughs from
diverse, smaller disciplines, such as geosciences, radiology, and optics, as opposed to
citation-rich biomedical sciences. Our work provides insights into the evolution of
science and paves a way for fair comparisons of the impact of diverse contributions
across many fields.

bibliometrics | scientific impact | citation analysis | science of science

Today’s scientific enterprise is characterized by fierce competitions for limited resources
such as funding and academic positions. Consequently, various stakeholders in science,
from faculty hiring committees to grant panelists, are tasked to evaluate the scientific
accomplishment of individuals, projects, and institutions and project potential future
impact. Increasingly, these tasks are assisted by numerical measures that rely on citation
data to calibrate the abstract notion of scientific impact, including the h-index and
number of papers in high Impact Factor journals (1). The usages of these indicators
in evaluation scenarios whose outcome affects researchers’ career make it necessary to
perform citation analysis in an unbiased manner.

For a scientific publication, the most widely used impact measure is the raw number of
citations,C , capturing the volume of subsequent works that build upon it. Citation count
is used both as an input for more advanced citation-based indicators for impact, and as a
criterion for identifying breakthroughs (2). However, C suffers from two well-recognized
biases (3–5): i) temporal bias, reflected by the higher rate of citations accumulated by
later papers, an inflation process that makes it difficult to compare the impact of papers
published decades apart; and ii) field bias, manifested by systematic differences ofC across
disciplines, creating the impression that papers in highly cited fields, like cell biology,
have inherently bigger impact than, for example, mathematics papers, where citations
are fewer.

Many techniques have been proposed to mitigate the influence of temporal and field
biases on the assessment of scientific impact (see ref. 6 for a review). These methods
typically suppress year- and/or field-level variations in citations by normalizing C i of a
paper i of interest with the average 〈Cn〉n∈N i of its similar papersN i. A widely adopted
definition of N i is the set of papers within the same research field as i, with field
either operationalized based on publication venue (7) or constructed algorithmically (8).
However, the choice of field classification systems (e.g., Web of Science’s Subject
Category, Scopus’s Subject Area, etc.) can affect the conclusions drawn from normalized
indicators based on journal-based classifications of fields (6). Similarly, algorithmically
constructed fields may lack the transparency and reproducibility often emphasized in
policy-making settings. More critically, partitioning papers into disjoint fields is a priori
and assumes that all papers in a field are identical in their subject matter, ignoring
significant within-field heterogeneities of subdisciplines and the increasing intermixing
between disciplines (9). To avoid the complications of defining crisp disciplines for
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impact normalization, another set of approaches define N i

as the set of papers that, together with additional criteria,
share bibliographic references with i (coreferenced papers) (10).
However, these methods only have limited power in identifying
similar papers, as they depend on i’s references—rather than the
focal paper i itself.

Here, we propose a paper-level, citation-based indicator Ĉ ,
representing our first contribution. Different from existing
methods that require predefined discipline labels of papers for
identifying N i, we consider N i as the set of papers with which
i is cocited. Our hypothesis is that the frequent coappearance
of two papers in the same reference lists captures the scientific
community’s assessment of the topical relatedness of the two
papers (9, 11–13). We show that Ĉ offers a better ability
in identifying papers that the scientific community considers
important and corrects for both temporal and field biases.
Our proposal is not the first one that relies on cocited pa-
pers for citation normalization. Relative citation ratio (RCR),
another paper-level citation indicator, is a forerunner in this
regard (11). However, there are several key differences between
our method and RCR. First, the normalizer used by RCR is
the average citation rate of the journals where cocited papers
were published, whereas we directly normalize by the average
yearly citations of papers. Second, RCR further benchmarks
normalized citation rate using papers funded by NIH R01
grants, remaining unclear how to generalize the benchmark
to the entire scientific literature. Third, while RCR performs
normalization only once, our normalization is performed on a
yearly basis. As such, RCR is influenced by papers with different
ages, and in theory, it could drop when extending the citation
window, whereas Ĉ accumulates over time and is nondecreasing.
Furthermore, our systematic, quantitative comparisons between
Ĉ and RCR indicate that Ĉ can better correct the field bias than
RCR does.

As a second contribution, we use Ĉ to generate insights into
the evolution of science by revealing research fields that continue
to produce high impact research over an extended period of time.
We achieve this by quantifying the representation of a field in
the set of top papers identified by Ĉ , given the time- and field
invariance of Ĉ . Our results unveil a diverse set of fields that have
been important sources for scientific breakthroughs, allowing us
to look beyond the highly cited disciplines.

Results

Defining Ĉ. To define our normalized indicator Ĉ , we look at the
total volume of citations generated by all citing papers published
in a single year t. These citations are to be distributed among
papers already published. For a particular paper i, it receives
cit citations (i.e., yearly raw citations). Typically, a large cit is
equated with high impact, but to determine the scale for which
cit is considered large, we need to compare it with ct obtained
by other papers similar to i in year t, denoted as N i

t . Here, we
leverage cocitations to identify similar papers (9, 11–13) and
define N i

t as the set of papers that are cocited with i by papers
published in year t (Fig. 1). We then define our yearly normalized
citations, ĉit , as cit normalized by the average yearly citations of
the papers in N i

t , formally,

ĉit =
cit

〈cnt 〉n∈N i
t

. [1]

Fig. 1. Defining yearly normalized citations, ĉit . For a paper i, its ĉit is defined
as yearly raw citations, cit , normalized by the average yearly citations of the
papers that are cocited with i by citing papers published in year t. In this
figure, paper i at t has cit = 3 and is cocited with papers a, b, and d, which
have yearly citations of 1, 2, 2, respectively. Therefore, ĉit = 3

〈1,2,2〉
= 1.8. In

another year, new citing papers are published, which leads to the change
of ci , the list of i’s cocited papers, and their yearly citations, resulting in a
different ĉi .

By definition, ĉit = 0 if cit = 0. The total normalized citations in
T years after publication is the sum of the yearly contributions:
Ĉ i
T =

∑T
t=0 ĉ

i
t .

Our measure, Ĉ , differs from the many existing measures in
two important ways. First, most prevailing normalization meth-
ods are designed with a prospective viewpoint that tracks a paper’s
citations accumulated over T years and normalized to similar
papers, which complicates the assessment of citation dynamics.
In contrast, our method is designed from a retrospective view,
focusing on how citations generated by citing papers published
in a single year are distributed to papers already published before
and constructed Ĉ from yearly normalized data. Our rationale is
that already published papers compete for citations from citing
papers and the comparisons of the collected citations need to be
made yearly, since citation volumes are increasing over time,
driven by the exponential growth of science publishing and
the gradually increasing number of references in a paper (3).
Second, most previous normalization procedures involve global
partitioning of papers, be it journal based or algorithmically
derived, and all the papers within one partition share the same
N i. This choice assumes implicitly that those papers are similar to
each other, which is hardly the case: Condensed matter physics,
for example, is an umbrella for superconductivity, topological
materials, quantum magnetism, subdisciplines with different
community sizes, and distinct citation practices. By contrast,
our method identifies papers that are locally similar to paper i,
and each paper has its own “personalized” N i that may change
over time.

To further illustrate the advantage of Ĉ i
T , we compare it with

two other popular indicators: total raw citations C i
T =

∑T
t=0 c

i
t

and C̃ i
T , which normalizes C i

T with the average CT of papers
in the same year and field, as determined by journals (7). We
calculate the three indicators for two exemplar papers published
in Nature in 1985 (Fig. 2). The first paper, p1, is in cell biology
reporting measured calcium levels in muscle cells (14). The
second, p2, is a geoscience paper that analyzed density contrasts
in the Earth’s lower mantle (15). Based on C10 [T is set to 10 y
to tradeoff between including more papers in our analysis while
keeping a relatively long citation window, following previous
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A B

Fig. 2. Comparing Ĉ10 with C10 and C̃10, using two papers. The first paper
(p1) refers to ref. 14 (blue), and the second (p2) refers to ref. 15 (orange). Both
were published in 1985 inNature. (A) Solid lines represent yearly raw citations,
ct , indicating that p1 constantly received more citations than p2 did and thus
had a higher impact than p2, based on C10. Given that both papers were in
the same year and journal group, C̃10 also suggests p1 had a higher impact
than p2. Dashed lines represent average yearly citations of the papers that
are cocited with p1 (p2), indicating that p1 ’s cocited papers had more citations
than p2 ’s, i.e., a higher

〈
cnt
〉
n∈Nt

. (B) Our yearly normalized measure, ĉt , which
compares ct with

〈
cnt
〉
, suggests that p1 has a lower impact than p2.

studies that have also selected similar values (2, 16, 17)], p1
has a much higher impact than p2 (449 vs. 181; Fig. 2A). But
C10 does not consider field size; most of p1’s citations came
from cell biology and other prolific biomedical fields, while
p2 was mostly cited by papers in geosciences—much smaller
fields (SI Appendix, Fig. S1). The C̃10 indicator accounts for
this field size effect using journal-based categorization of fields.
Therefore, it continues to rank p1 higher (20.5 vs. 8.3) because
p1 and p2 were published in the same journal and hence share
identical field-specific normalizer. By contrast, the proposed Ĉ
automatically identifies the research area of a paper through the
list of cocited papers and compares its impact with those papers.
Indeed, although p1 acquired many citations, so did many of
the other papers with which it was cocited, i.e., a large

〈
cnt
〉
n∈Nt

(Fig. 2A). This is in contrast to p2, which received many more
citations than its cocited papers (Fig. 2A). Therefore, the yearly
normalized citations, ĉt , indicate that p1 has a consistently lower
yearly disciplinary impact than p2 (Fig. 2B) and thus a lower total
impact (14.1 vs. 30.7). In other words, ĉt measures the relative
impact of each paper within the “discipline” it is embedded
in, which may be a single discipline, or a mixture of multiple
traditionally defined disciplines.

Validating Ĉ. We validate Ĉ10 using external evaluations from
domain experts on the importance of papers. For example,
Physical Review Letters (PRL) released a list of 87 “Milestone
Letters” that made significant contributions to the development
of physics and can be considered as breakthroughs within their
subdisciplines (https://journals.aps.org/prl/50years/milestones).
First, we confirm that the selection of these papers was not driven
by raw citation count, as they are not the most cited papers in the
journal and their ranks based on C10 among all PRL papers span
several orders of magnitude (Fig. 3C ). Still, milestone papers
have higher impact than the average PRL papers, as measured by
both C10 and Ĉ10 (Fig. 3 A and B). More importantly, when we
compare the ranks of milestone papers based on C10 and Ĉ10,
we find that these papers are consistently ranked higher if we use

Ĉ10 than if we use C10 (Fig. 3C ), indicating a better capability
of Ĉ10 to recover important papers. Methods like C̃10 that use
journals as the proxy for fields lose such capability, given that
all the milestone papers were published in the same journal. The
same effect is observed for milestone papers identified by three
other journals (PNAS, PRE, and Human Relations), confirming
the ability of Ĉ10 to select papers that the scientific community
considers important, independent of their citation counts and
publication venue (SI Appendix, Fig. S2).

Ĉ Corrects Temporal and Field Biases. One widely known
drawback of raw citation count is its dependence on publication
time. This can be readily seen from Fig. 4A, where we plot,
for each year from 1945 to 2007, the distribution of C10 for
papers published in that single year. It is apparent that these
distributions shift systematically rightward over time, indicating
an inflation process of C10. For example, the median C10 for
papers in 1945 is 1, which increased to 9 in 2007; a paper in 1945
with 17 citations was able to become a hit, i.e., a top 5% most
cited paper, but achieving the same status required 65 citations
for papers in 2007. Such a dependence on time, however, is
not presented in Ĉ10. The distributions of Ĉ10 for all the years
considered appear to collapse onto a single shape (Fig. 4B; see also
SI Appendix, Fig. S3), demonstrating a universality and lending
a strong support for the temporal stability of Ĉ10. We further
fit a log-normal distribution for each individual year, since it
is one of the most popular functional forms used in previous
citation distribution analyses. We find that the distributions of
Ĉ10 of papers in individual years are compatible with the log-
normal form with nearly the same shape parameter � = 1 to
1.2 (SI Appendix, Fig. S4). This result is in line with numerous
prior studies that identified a similar range of � for papers in
journals (18–20), institutions (20), fields (21–23), as well as
Mendeley readerships (24) and patent citations (25).

The inflation of C10 generates temporal bias favoring more
recent papers. To demonstrate this bias more quantitatively, we
rank all papers published in 1945 to 2007 according to C10
and calculate the percentage of papers published in each year
that appear in the top 5% of the global ranking. If C10-based
ranking is fair, it means that each year would contribute 5%
of its papers to the top, which is far from the case: There is a
systematic increase in the percentage of papers ranked into the
top over time (Fig. 4C ), suggesting that ranking by C10 creates
bias favoring more recent papers. However, if we rank papers by
Ĉ10, yearly contributions fluctuate around the baseline, without
exhibiting the recency bias as C10 does.

A B C

Fig. 3. Validating Ĉ10 using “Milestone Letters” published in Physical Review
Letters (PRL). (A and B) Histograms of C10 and Ĉ10 for milestone papers
and all PRL papers. (C) Comparison between C10- and Ĉ10-based ranks of
milestone papers among all PRL papers. Rank 1 corresponds to the paper
with the largest C10 (Ĉ10). The diagonal dashed line represents equal ranks,
and points above the line indicate better ranks based on Ĉ10.
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A B C

D E

Fig. 4. Ĉ10 corrects the temporal and field bias characterizing C10. (A and B) The inflation of C10 over time, in contrast to the temporal stability of Ĉ10. We
plot, for each year from 1945 to 2007, the survival distribution of (A) C10 and (B) Ĉ10 for papers published in that year. The color of a curve encodes publication
year. While the distributions of C10 shift rightward, the distributions of Ĉ10 are well described by a single shape. (C) Percentages of papers published in each
year that appear in the top 5% ranked by C10, Ĉ10, or C̃10 among all papers in 1945 to 2007. For clarity, the curve for C10 normalized by year is not shown,
as it is essentially identical to the C̃10 curve. The RCR case is not applicable due to the unavailability of RCR metrics for the entire WoS corpus. (D and E) The
entropy of (D) years and (E) fields for the top publications ranked among all papers from 1980 to 2007 using C10 (green), C10 normalized by each year (red), C10
normalized by each year and field (purple), RCR (blue), and Ĉ10 (orange). In both cases, the corpus of papers refers to PubMed where RCR is available (26), the
horizontal black line indicates the entropy for the entire corpus, and the vertical dashed line marks the top 5%. See also SI Appendix, Fig. S12 where we focus
on the absolute entropy difference from the baseline.

Another way to capture the recency bias is to explore the
diversity of years present in a ranking of all publications. Here,
we take the top p-percent of publications as ranked by different
citation metrics and then measure the diversity of years using
the entropy of the normalized year count distribution. If no bias
was present in the ranking and all publications had an equal
chance of being at the top, then all years would be present
proportional to the total number of publications from that year
and we would find an entropy of 3.29 bits, while a smaller
entropy reflects less diversity and a bias toward specific years,
and a larger entropy occurs for a greater diversity reflecting
overcompensation. As shown in Fig. 4D, C10 is the most biased
indicator, selecting more top publications from the same years.
On the other hand, C10 normalized by the average in each
year has a higher entropy than the corpus baseline, indicating
an overcompensation with more publications from early years
in the overall top ranking than would be expected based
on their frequency. Notably, both RCR and C10 normalized
by each year and field also display this overcompensation
and promote more publications from early years. Finally, Ĉ10
shows a compromise between the tendency to over or under
compensate and has an entropy of 3.25 bits for the top 5% of
publications.

Another potential bias when recognizing top publications
using C10 comes from the drastically different sizes and citation
norms in different disciplines. This can be observed from SI
Appendix, Fig. S5A, where we show the distributions of C10 for
several fields. We observe that, from cell biology to analytical
chemistry to mathematics, there is a systematic, one order of
magnitude decease of median C10. These differences nearly
disappear if we use Ĉ10 (SI Appendix, Fig. S5B).

Once again, we can capture the field bias by exploring the
diversity of fields present in a ranking of all publications. Here,
we take the top p-percent of publications as ranked by different
citation metrics and then measure the diversity of fields using the
entropy of the normalized field count distribution. If no bias was
present in the ranking and all publications had an equal chance of
being at the top, then all fields would be present proportional to
the total number of publications from that field, resulting in an
entropy of 4.35 bits. A smaller entropy reflects less diversity and a
bias toward specific fields, and a larger entropy occurs for a greater
diversity reflecting overcompensation. As shown in Fig. 4E , C10
is an extremely biased indicator, selecting more top publications
from the same few fields. Surprisingly, C10 normalized by the
average in each year is even more biased toward specific fields—
its application increases the tendency to favor publications from
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specific fields. Notably, both Ĉ10 and C10 normalized by each
year and field show significantly reduced bias toward a few fields
and are consistently the closest to the random baseline. More
specifically, C10 normalized by each year and field is slightly
less bias than Ĉ10 for the top 6% of publications but tends to
overcompensate for smaller fields at the 5% mark, while Ĉ10
consistently has a smaller entropy and is closer to the random
baseline for top publication sets of 6% to 10%. Finally, RCR
shows a reduced bias toward specific fields compared to C10, but
is still more biased than Ĉ10.

In summary, based on these diverse perspectives, we conclude
that Ĉ10 best corrects both the temporal and field biases
characterizing C10.

Fields Producing High-Impact Works. Finally, we leverage the
field- and time invariance of Ĉ to assess science-wide advance-
ment across discipline and time. It has long been posited that sci-
ence advances through intermittent revolutionary breakthroughs
that have long-lasting impact by triggering new directions of
research and giving birth to new disciplines (27). While much
quantitative attention has focused on characterizing the emer-
gence of individual fields (28, 29), their growth dynamics (30–
35), and the interactions between disciplines (36), little is known
about the dynamics of individual breakthroughs within and
across fields. This paucity of knowledge prompts us to ask the
following: What fields produce high impact research and how

does a field’s ability to stay at the forefront of the research
enterprise change over time?

Answers to these questions rely on the accurate identification
of breakthroughs. A straightforward way adopted in existing
practice considers the top x% most cited papers grouped by
year and field as breakthroughs (2). This, on one hand, mitigates
the effects of temporal and disciplinary variations in citations but
assumes that every field in every year generates breakthroughs at
the same rate. Such a strong assumption about the pace of science
advancement is highly unlikely to hold, considering, for example,
the theoretical argument from Kuhn that scientific revolutions
happen only sporadically (27). Since Ĉ10 is not susceptible
to temporal and disciplinary biases, we can directly compare
the impact of papers across discipline and time. Therefore, we
select from all the papers in our sample (including all years and
disciplines) the top 5% with the highest Ĉ10 and denote the
obtained list as Ĥ . For comparison, we also identify top papers
based on C10 and C̃10 and denote them respectively as H and
H̃ . Our first observation is that Ĥ and H only share 49% of the
papers and H̃ and H 59% (SI Appendix, Fig. S6). This suggests
that papers with low C10 can still rank high based on Ĉ10.

Turning to the question of which fields produce high impact
papers, we compute the fraction of papers in Ĥ that belong to a
given field, finding that top contributors to Ĥ include fields
in physics, chemistry, and biomedicine (Fig. 5). Particularly
interesting are the three of the top four categories, which

Fig. 5. Rank comparison
of fields by their shares in
top 5% papers. We identify
from all the papers in our
sample the top 5% based on
C10, Ĉ10, and C̃10 and com-
pute the fraction of these
papers that belong to each
field. The horizontal bars
represent the shares, and
the color represents the
broad discipline. We only
display the top 25 fields and
report the fields with the
most rank changes in SI Ap-
pendix, Table S1. Multidisci-
plinary Sciences is a hybrid
category that includes mul-
tidisciplinary journals such
as Nature, Science, PNAS, Sci-
entific Reports, etc.
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are multidisciplinary chemistry, multidisciplinary sciences, and
multidisciplinary physics. These correspond to multidisciplinary
journals like Nature, Science, and PNAS that are perceived
commonly by the academic community to publish selectively,
as well as physics and chemistry journals like PRL and Journal of
the American Chemical Society that publish quality contributions
from any topics within the disciplines. SI Appendix, Fig. S7
confirms that these journals indeed published the most papers
in Ĥ , corroborating the ability of Ĉ10 to pick out high-
impact papers. Several fields that account for only a small
portion in H become sizable contributors to Ĥ , including
mathematics, electrical and electronic engineering, geochemistry
and geophysics, organic chemistry, polymer science, etc. Among
them, mathematics is noticeable for its steep ascending from a low
representation in H (0.19%; ranked 93rd) to a leading position
in Ĥ (1.6%; ranked 15th). On the other hand, many biomedical
fields like cell biology, genetics and heredity, and microbiology
that are ranked high when using C10 move to lower positions
when using Ĉ10.

Dynamics of Production of High-ImpactWorks. We characterize
the temporal evolution of the production of high impact papers
across fields, by taking field size into consideration, as larger fields
would have more top papers by chance. In doing so, we introduce
r̂f,t that measures the representation in Ĥ by papers in field f and
year t. Specifically, it is the fraction of papers in Ĥ that belong
to field f and year t, normalized by the fraction of papers of
the same group in all the papers. Thus, r̂f,t > 1 indicates that
the group is overrepresented in Ĥ and r̂f,t < 1 underrepresented,
thereby providing a quantification of the field’s ability to produce
breakthrough articles relative to other fields at t. Similarly, we
calculate rf,t .

Let us first use Cell Biology as an example (Fig. 6). This
field in 2007 accounted for 0.043% and 0.04% in Ĥ and in all
the papers, respectively, indicating its overrepresentation in Ĥ
(r̂ = 1.07). The heatmaps presented in Fig. 6A that encode r̂t
and rt by color reveal the dynamics of the production of high
impact research from Cell Biology over six decades. Based on
rt , it has been consistently a source for revolutionary scientific
breakthroughs, which partly reflects high average citations of
papers in this field. A much richer dynamics is revealed by r̂t :
Relative to other fields, Cell Biology lost its ability to produce
breakthroughs between 1965 and 1980s and has regained its
leading role in the early 1990s. We hypothesize that the rebound
may be related to the emergence of genomics, as exemplified
by the Human Genome Project initiated in the 1990s (38).
To corroborate this, we identify overrepresented title words
of Cell Biology papers published in each decade, compared
to papers before 1980, finding that the 1990s were charac-
terized by the rise of studies centered around gene expression
(Fig. 6B).

We expand the analysis to other fields and group them based
on their rt and r̂t (Fig. 7). The first group corresponds to fields
that continue to produce high impact works disproportionately
during the studied period (r̂t > 1, rt > 1), as identified by both
measures, including Neuroscience, Astronomy and Astrophysics
(Fig. 7A). The second group is featured by r̂t < 1 and
rt > 1. Those include many Biomedical Research and Clinical
Medicine fields that are ranked high only by C10 (Fig. 7B).
The third group includes fields whose importance is dismissed
by rt (rt < 1) but picked up by r̂t (r̂t > 1). Those fields
span diverse disciplines (Fig. 7C ), including i) within the Earth

A

B

Fig. 6. A case study of Cell Biology. (A) Dynamics of the production of top
cited papers from Cell Biology. (B) Overrepresented title words of Cell Biology
papers in each decade, relative to papers before 1980 (37).

and Space category, Geochemistry and Geophysics, Meteorology
and Atmospheric Sciences, Limnology, and Oceanography; ii)
several physics fields, including Fluids and Plasmas Physics,
Applied Physics, and Optics; iii) Electrochemistry and Physical
Chemistry; iv) Ecology; and v) Surgery, Clinical Neurology,
and Radiology from Clinical Medicine. The contrast of the
likelihood to produce high impact works for fields in the third
category also leads us to ask the following: Are there no periods
of time when there are “excitements” going on in those fields,
as suggested by rt ? We argue that this is not the case. For
example, considering the development of medical imaging, there
has been tremendous progresses in this area since the 1970s, and
advancements like computer-assisted tomography (CT) and MRI
have been quickly applied for medical diagnostics and won the
1979 and 2003 Nobel Prize in Physiology or Medicine (39). The
fields of the key breakthroughs behind these development, like
radiology (“Radiology, Nuclear Medicine & Medical Imaging”),
are dismissed by rt but captured by r̂t .

Finally, going beyond case studies, we examine which features
of a field explain its rt (r̂t ). We hypothesize that field size and
number of references by field may correlate with rt and r̂t , as
previous studies have pointed out that the two factors contribute
to the temporal and field biases in raw citations (40). We find
that field size is less correlated with r̂t than with rt (SI Appendix,
Fig. S8). More importantly, the average number of references
per paper is significantly less correlated with r̂t than with rt (the
median coefficient of determination R2 = 0.16 vs. 0.49; SI
Appendix, Fig. S9). These results further support the ability of
Ĉ10 to correct the systematic biases of C10 and r̂t rather than rt
as a viable indicator for a field’s tendency to produce high impact
research.

Discussion
Citation-based impact metrics have been increasingly adopted for
academic performance evaluations of diverse types of actors—
authors (41), institutions (42), and even nations (43), playing
an important role in hiring, funding, and promotion (44). It is
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A B C

Fig. 7. Production dynamics of top papers in selected fields. We group fields based on their r̂t and rt values: (A) fields that are overrepresented based on
both r̂t and rt ; (B) fields that are underrepresented based on r̂t and overrepresented based on rt ; and (C) fields that are overrepresented based on r̂t and
underrepresented based on rt .

therefore essential to carry out citation analysis in an unbiased
way. Yet, raw citations are known to be biased by variations
in citation patterns across discipline and time, prompting us to
propose a properly normalized measure that corrects those biases.

The fact that both RCR and Ĉ rely on cocited papers for
citation normalization raises the question of the differences
between the two indicators. Our systematic comparisons of them
indicate that our Ĉ can better correct the field bias than RCR
does, yet for year bias, all metrics underperform, meaning that
they all identify top papers that were more likely to be published

recently. Such a undercompensation might indicate that, at
least in biomedicine, disruptive science may not be declining
as suggested in a previous study (45). Furthermore, Ĉ identifies a
very different set of highly influential papers from the set by RCR,
sharing only 54% of the top 5% papers. The rankings of fields
based on their shapes in top papers also reveal that, while fields
like General and Internal Medicine, Neuroscience, and Surgery
are found to be important by both methods, the importance of
multidisciplinary physics and chemistry as well as radiology are
not recognized by RCR (SI Appendix, Fig. S11).
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Throughout this work, we used citation data to quantify
the scientific impact of a scientific article, aiming to unveil
how and when raw citation signals impact. We acknowledge
that scientific impact is a complex, multidimensional notion,
easier to intuit than to quantify, and getting cited may capture
only one aspect of impact as codified in the discourse of
science. Supplementing citations with contextual information
extracted from text analysis may help capture more nuanced
notion of impact (46). Similarly, looking at citations from other
domains, like patents and policy documents, may also enrich
the multifaceted feature (47, 48). Still, due to the accessibility
and quantity of article citation data, citations provide valuable
insights into the evolution of scientific discovery and citation-
based analyses form the cornerstone of the science of science. In
implementing our methodology, given the content and structure
of current bibliographic databases, it is easier to calculate our
metric for individual papers than existing normalization metrics
(SI Appendix, Text). Yet, when the number of citations is small,
the cocitation neighborhood might also be small and therefore be
less reliable for normalization. Mirroring the raw citation count,
the cocitation network may also be influenced by self-citations,
large authorship teams, or other factors related to the social
processes of science that may affect how citations are generated
and consequently affect the network (49). For example, publicity,
such as comments and promotion in social media, and attention
to high Impact Factor journals may induce additional citations.
Similarly, social and epistemological considerations may also
generate influence citations that are interpreted as expressions
of “discursive relation” or “professional relation” to scientific
communities. To address these factors, future work can utilize
datasets which capture diverse aspects of the social processes, and
derive citation networks that better reflect impact. For example,
very high profile results are often not cited explicitly, but only
mentioned in the text, acquiring hidden citations (50). Our
methodology is then ready to be adapted to address the role
of these modified graphs. Finally, we focused only on articles,
which may not be the main publication medium for some fields
in social sciences, humanities, and computer science.

Despite these limitations, our proposal of a citation-based
measure that is time invariant and free from discipline bias allows
us to compare the impact of papers across years and disciplines.
A key contribution of our method is the elimination of the
need to assign a publication to a discipline when measuring
its impact. Previous research has demonstrated that science is
becoming increasingly interdisciplinary (9), complicating the
traditional picture of science structured into well-defined research
departments and funding programmes. Thus, notions of locally
comparable research, such as we introduced here, provide
an important step toward studying the interactions between
scientific disciplines and the emergence of new research areas.
To this end, we demonstrate that contributions to revolutionary

breakthroughs in the past half century came from diverse
disciplines, such as radiology, applied physics, ecology, and
geosciences, as opposed to be dominated by biomedical sciences.

Materials and Methods

We based our analysis on the Web of Science (WoS) database. We only considered
“article,” “letter,” and “note” documents indexed there and limited our attention
to 26,792,332 papers published between 1945 and 2007 to ensure a 10-y
citation window. Citing documents were constrained within the three selected
types; therefore, citations from other types of papers such as editorial and review
were not included. Research fields of papers were taken as WoS Subject Category
(SC), and papers can have more than one SC.

The C̃ measure uses papers published in the same SC and year as reference
set and normalizes the number of citations by the average citations of papers
in the set (51, 52). Therefore, this indicator relies on external category labels
of papers. Applying the procedure in practice also requires one to make the
choice on how to deal with papers with multiple categories, as 36.2% of papers
have more than one category (SI Appendix, Table S2). There are several ways
to handle those papers. A straightforward one is to count them multiple times.
This, however, would artificially increase the number of papers drastically, which
would lead to the increase in the number of top papers. Here, we first calculate
the C̃10 value for each category assigned to a paper and then pick the maximum
one. We ignore the 56,991 papers without category labels.

We obtain RCR metrics from the NIH Open Citation Collection (Version
40) (26, 53), which focuses on PubMed papers. We retain only research articles
published in 1980 to 2007, as a large fraction of pre-1980 papers do not have
RCR values (SI Appendix, Fig. S10). We then match the retained papers to WoS
using PubMed ID or DOI and drop unmatched papers from our analysis. The
final corpus contains 7,710,057 PubMed papers.

A Python implementation of Ĉ is provided in the pySciSci package (54).

Data, Materials, and Software Availability. Replication data have been
deposited in Github (https://github.com/qke/network-normed-c) (55). Some
study data available the raw Web of Science data used in this work cannot
be shared due to its proprietary nature but is available upon purchase from
Clarivate Analytics at https://clarivate.com/contact-us/sales-enquiries/. Other
relevant data supporting the replication of this work have been deposited
at https://github.com/qke/network-normed-c (55). A Python implementation of
the proposed measure is available in the pySciSci package (https://github.com/
SciSciCollective/pyscisci).
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