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ABSTRACT

Background: In recent years, the possibility to noninvasively interact with the human brain has led to
unprecedented diagnostic and therapeutic opportunities. However, the vast majority of approved in-
terventions and approaches still rely on anatomical landmarks and rarely on the individual structure of
networks in the brain, drastically reducing the potential efficacy of neuromodulation.
Objective: Here we implemented a target search algorithm leveraging on mathematical tools from
Network Control Theory (NCT) and whole brain connectomics analysis. By means of computational
simulations, we aimed to identify the optimal stimulation target(s)— at the individual brain level—
capable of reaching maximal engagement of the stimulated networks’ nodes.
Results: At the model level, in silico predictions suggest that stimulation of NCT-derived cerebral sites
might induce significantly higher network engagement, compared to traditionally employed neuro-
modulation sites, demonstrating NCT to be a useful tool in guiding brain stimulation. Indeed, NCT allows
us to computationally model different stimulation scenarios tailored on the individual structural con-
nectivity profiles and initial brain states.
Conclusions: The use of NCT to computationally predict TMS pulse propagation suggests that individu-
alized targeting is crucial for more successful network engagement. Future studies will be needed to
verify such prediction in real stimulation scenarios.
© 2022 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

organization displays a number of features, such as rich clubs [1],
modular hierarchy [2], and an abundance of motifs [3]. This

The brain is a complex network, whose components are linked network organization is thought to support a trade-off between
to one another via intricate structural communication pathways. Its physical wiring cost and efficient information propagation [4,5],

while also facilitating both localized functional specialization and
the rapid global integration of information between different brain
regions [6]. This optimized network structure evolves throughout
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development [6], progressively forming the underlying backbone
necessary to support the neural processes responsible for higher
order human cognition [7]. Most importantly, the brain's wiring
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diagram, that is, the connectome, is subject to high levels of
interindividual variability, responsible for many of the observed
differences in human behavior [8,9]. However, some network al-
terations are associated with both neurological and psychiatric
conditions [6]. Growing interest is therefore being directed towards
the possibility of therapeutically manipulating the human func-
tional connectome: carefully altering its activity to a desired state
by means of external perturbations. Such interventions are opening
a new avenue of selective manipulation of region-to-region con-
nections, or larger networks, leading to behaviorally relevant
changes and clinically measurable outcomes [10,11]. For network
manipulation to be effective, however, models need to be con-
structed that are capable of precisely predicting perturbation pat-
terns and outcomes at the individual level. Noninvasive Brain
Stimulation (NiBS) covers a wide range of techniques that make use
of transcranially applied electrical currents in order to reach
cortical layers and promote, or inhibit, neural activity. One of the
first and most widely implemented of these approaches is Trans-
cranial Magnetic Stimulation (TMS). In TMS, strong and fast elec-
tromagnetic pulses are delivered from a coil positioned on the
individual's head. These pulses generate underlying secondary
electrical currents capable of causing neural discharges [12].
Thanks to its efficacy and ease of use, TMS is routinely employed in
research studies investigating normal brain function, as well as in
clinical trials. Furthermore, TMS devices have received clearance
from the U.S. Food and Drug Administration (FDA) as a treatment
option for medication-resistant Depression [13], Migraine [14] and
Obsessive Compulsive Disorder [15].

Nevertheless, major concerns have been raised regarding the
high interindividual variability in TMS responses [16,17]. One crit-
ical concern is that stimulation targets are often chosen based on
fixed anatomical landmarks, reflecting group-level statistics on the
role of a specific brain region in a given behavior. Hence, the same
brain region is usually selected as the target across all individuals,
completely disregarding the interindividual differences in brain
structure and underlying network topology that ultimately shape
the effect of stimulation. For instance, recent perturbation studies
have demonstrated the tight link between network topology and
individual cognitive profiles, highlighting the benefits of individu-
alized targeting in ensuring high specificity of the induced
perturbation [18]. Indeed, in complex biological networks, knowl-
edge of the network topology is sufficient to predict perturbation
patterns with 65—80% accuracy rate, suggesting that topological
models might be employed for the investigation of biological in-
teractions [19]. A number of studies have exploited notions from
the nascent field of Network Control Theory (NCT) to advance the
quest to explain the relationship between network topology and
network function [20—23]. Specifically, NCT applied to the brain
allows us to query which regions have greater ability to drive the
whole brain system towards desired states of activation due to their
connectivity profiles [24]. We can also describe the amount of
control energy required to favor such state-to-state transitions [20].
The mathematical framework for the study of the effects of exter-
nally applied inputs on complex ensembles is at the core of NCT,
which particularly suits the modeling of perturbation studies
[22,25,26]. Indeed, NCT can be used to reveal trajectories and
complex network dynamics considering the interactions between
network components [25]. In the present study (Fig. 1), we make
use of NCT principles to identify target stimulation sites that acti-
vate functional networks in the brain from an individual's struc-
tural connectome and their initial functional state. To do so, we
compared the effects of different stimulation scenarios in reaching
maximum engagement of specific functional networks, targeting:
(i) one or two general cortical nodes derived from prior TMS studies
(respectively, Trad-1 and Trad-2); (ii) two individualized nodes
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based on graph theory properties (i.e., two nodes with the shortest
path length (PL) or two nodes with the highest weighted nodal
degree (ND) to other nodes of the network); (iii) one or two nodes
derived from NCT predictions (respectively, NCT-1 and NCT-2). We
hypothesized that once we take the individual network topology
into account, interindividual variability in optimal stimulation sites
will become apparent. For this reason, we also hypothesized that
individualized stimulation approaches will have higher chances of
reaching network nodes, compared to traditional stimulation ap-
proaches. Since NCT sites are optimized to induce the maximum
network engagement via our dynamical model, they will neces-
sarily outperform any other stimulation condition. However, if
traditional sites already represent efficient stimulations entries for
network engagement, then we should observe no significant dif-
ference in the models comparing their performance to that of NCT
predictions.

2. Methods
2.1. Neuroimaging data and individual connectome extraction

For the purposes of this study, structural and functional neu-
roimaging data of 400 healthy young individuals (Males = 170; Age
range 21—35 years old) were taken from the Human Connectome
Project (HCP) Dataset (https://ida.loni.usc.edu) [27]. Of those, 45
participants (Males = 11) underwent neuroimaging data acquisi-
tion twice (4.7 + 2 months interval) for test-retest purposes.

The HCP consortium makes available to the user both diffusion
tensor imaging data (DTI) and resting state functional magnetic
resonance imaging (rs-fMRI) data that have already undergone
basic preprocessing steps [28—31]. On top, spatial smoothing with a
kernel with a full width at half maximum of 6 mm and a band-pass
filter [0.001—0.080Hz] were also applied to rs-fMRI data to remove
potential remaining noise confounds.

As for DWI data, the preprocessing pipeline was run in Ubuntu
18.04 LTS and included tools in FMRIB Software Library (FSL 5.0.3;
www.fmrib.ox.ac.uk/fsl) [32], MRtrix3 (www.MRtrix.readthedocs.
io) [33] and FreeSurfer [34]. All images downloaded were already
corrected for motion via FSL's EDDY [35] following the HCP pipeline
[36]. The multi-shell multi-tissue response function [37] was esti-
mated using constrained spherical deconvolution algorithm [38].
Simultaneously, the T1w images, which were already coregistered
to the b0 volume, were segmented using FAST algorithm [39].
Anatomically constrained tractography was employed to generate
the initial tractogram with 10 million streamlines [40] using
second-order integration over fiber orientation distributions [41].
Then, spherical-deconvolution Informed Filtering of Tractograms
(SIFT2) methodology [42] was applied in order to provide more
biologically accurate measures of fiber connectivity.

As for the atlas, an ad-hoc brain parcellation of 226 regions of
interest (ROIs) covering cortical, subcortical and cerebellar struc-
tures was extrapolated and then used to extract highly individu-
alized connectomes. Specifically, for our cortical ROIs, the Schaefer
Atlas of 200 parcels [43], which distinguishes into 7 functional
networks (Visual- VIS, Sensorimotor- SMN, Dorsal Attention- DAN,
Ventral Attention- VAN, Limbic- LIMB, Frontoparietal- FPN, Default
Mode- DMN), was mapped to the individual's FreeSurfer parcella-
tion using spherical registration [44]. A distinction into the same
networks was also applied for 14 cerebellar ROIs, which were
extracted from the Buckner Atlas [45]. Furthermore, a Freesurfer
parcellation was ultimately applied to derive individual ROIs of 12
subcortical structures, including the bilateral basal ganglia (divided
into the putamen, caudate and pallidum nuclei), the amygdalae and
thalami. As a result, 226x226 connectivity matrices were extracted,
representing the number of white matter tracts connecting each
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Fig. 1. Methodological workflow. A. Individual subject anatomy and diffusion tensor imaging (DTI) data were employed for the construction of individual cortical, subcortical and
cerebellar parcellations into a total of 226 regions. Individual graphs were then built, in which brain regions are nodes and their structural connections are edges. B. Interindividual
differences in the brain graph organization are shown for 3 exemplificative individuals. Although a general structure is common across participants (i.e., the division of the graph
into 2 distinct hemispheres and the cerebellum), differences can be observed in the layout of the single nodes forming the cerebral networks. C. Simulations of cortical activation
patterns following the delivery of a TMS pulse were run. NCT was applied to determine the best simulating scenario for the transitioning of brain activity from an initial state to a
desired final state, here represented by the marked activation of the SMN (blue dots). D. Three different stimulating scenarios were compared in their efficacy to induce targeted
network engagement. Specifically, we compared the efficacy of stimulation applied to i) traditional stimulation sites, as found in the literature; ii) stimulation sites that were derived
from graph theory analysis, namely nodes with the shortest path length or with the highest nodal degree to the rest of the network nodes; iii) sites from NCT predictions, that is,
nodes that have the greatest success of driving the system toward a desired final state. We hypothesize that different stimulation scenarios will result in different activation patterns
in the surrounding nodes as a function of their connectivity and distance to the stimulation site.

CEREB= Cerebellar; DAN = Dorsal Attention Network; DMN = Default Mode Network; FPN= Frontoparietal Network; LH = Left Hemisphere; LIMB = Limbic Network; NCT=
Network Control Theory; RH = Right Hemisphere; Sbj = Subjects; SMN= Sensorimotor Network; SUB= Subcortical; TMS = Transcranial Magnetic Stimulation; VAN= Ventral
Attention Network; VIS= Visual Network.

pair of ROIs. The same ROIs were used to extract changes in the its biggest eigenvalue and then by multiplying it by a fixed constant.
fluctuations of the Blood Oxygen Level Dependent (BOLD) signal, We denote the external input (u), which has the form of a simple
which was used to inform the model about the baseline state of pulse, and specify which nodes u is applied to via B, an nxn adja-
activity prior to stimulation. The final connectivity matrices were cency matrix (Fig. 2A). B(i,i) = 1 if u is applied to node i. The efficacy

also normalized based on the size of each ROIs [46]. Based on the of a model's prediction was then determined based on the vicinity
principles of Graph Theory, we used graphs to represent the indi- of the simulated final state to the desired final state. We defined the
vidual structural connectome, whereby brain regions are treated as desired final state as having maximal activity in the nodes
nodes and their structural connections as edges [47] (Fig. 1 A, B). belonging to the network of interest. In other words, the desired
The use of a graph to represent the brain connectome is crucial in final state is defined by the experimenter and it represents a con-
order to study the individual pathways of information flow. dition of maximum activity in an ensemble of nodes forming a

network. For example, a researcher or clinician might wish to
activate the nodes belonging to the DMN. In this scenario, the
desired final state is hence a condition of maximum activity in the
DMN. That is, any brain-wide activity levels that involved a greater
activation of nodes in the DMN as compared to nodes in other
subnetworks. Specifically, we assessed the efficacy of the model by
considering the number of the most highly activated nodes that lie
in the network of interest. Specifically, we calculated:

2.2. Network control theory for stimulation target selection

To determine the efficacy of different targeting scenarios, we
constructed a model to simulate the transition from an initial state
to a desired target state following the application of an external
input, mimicking a TMS pulse (Fig. 1C). Consistent with prior
literature, we assumed the linear time-invariant network dynamics

described by:

INSper={i:ielandi < Sper} (2)
X(t) =Ax(0) + Bu(t) (1)

where [ is the set of the top 30 nodes (roughly 10%) as ranked by
where A is a nxn matrix that represents the individual structural their activation levels following stimulation and S is the set of nodes
connectome and x(0) is the nx1 vector of activity of each brain re- in the network of interest. Results at different values of I (e.g., 15% or
gion, as measured by BOLD activity. We define x(0) to be the indi- 40%) are available in the Supplementary Materials and prove con-
vidual initial state extracted from the timeseries of the participant's sistency across thresholds. To go back to our example, if we want to

resting-state fMRI at the first time point of scanning. To prevent reach a state of DMN activity, then our desired final state is that
uncontrolled trajectories, A was stabilized by dividing the matrix by with maximum activity in the nodes of the DMN and Spg; is the set
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of nodes in the DMN. A trajectory that successfully reaches this
desired final state will result in greater activation of DMN nodes
compared to nodes belonging to other resting state networks. In
other words, the most effective stimulation scenario will increase
vicinity to the desired target state, in the sense that it will mostly
result in activation of the nodes belonging to the network we wish
to reach (i.e., the target state) and it will do so by inducing the
greatest activity in such nodes (i.e., they will be the nodes showing
the greatest change in activity compared to baseline). For the
purposes of the present study, the trajectories arising from 3
different stimulation scenarios were compared in their efficacy to
reach a desired final state (Fig. 2A). The first of those trajectories
was represented by the stimulation of traditional stimulation sites,
where commonly employed TMS literature targets were used as
input nodes. Our second trajectories were graph derived, whereby
input nodes were chosen as the nodes with the shortest path length
or the highest nodal degree to the other nodes in the network, as
those are two of the most common graph properties underlying
information exchange between nodes. We define the weighted
path length of a specific node i to a given network S;e¢ as:

dise = > Wi 3)

jESne[

where w is the non-zero weighted shortest path length from node i
to node j [47]. That is, we simply sum path lengths from i to all
nodes j in the network of interest. Note that we take the reciprocal
of edge weights when calculating short path lengths to ensure that
the higher weight of a stronger connection is reflected as a shorter
path through the network. The network-specific measure of
weighted nodal degree was then computed as the total sum of the

Brain Stimulation 15 (2022) 1418—1431

weighted links connecting a given node to all other nodes of the
network of interest. The Brain Connectivity Toolbox (https://sites.
google.com/site/bctnet/) function running in MATLAB 2017b was
used to extract these graph theory parameters.

Finally, our third stimulation condition was based on our
Network Control Theory predictions. As described above, the dy-
namics described in equation (1) were simulated. We iteratively
applied the input signal to all nodes in the parcellation to identify
the most efficient stimulation target. We chose the stimulation
target retrospectively as the one that activates the highest number
of nodes belonging to the target state of interest within the first 10%
of the activated nodes overall. As a result, our simulations could
either target the same stimulation site for all our subjects (trad), or
they could vary based on two degrees of personalization: graph-
based (PL and ND) and NCT (Fig. 2B).

Finally, prior work has highlighted the issue that in order to
guide a system to desired states, the number of nodes stimulated
has to be relatively high (16%—25% of all nodes) [23]. However,
current TMS approaches can enable the application of not more
than two stimulation targets simultaneously by means of double
coil use, also known as cortico-cortical paired associative stimula-
tion [48]. For these reasons, we also compared the efficacy of tar-
geting 1 node versus targeting 2 nodes, defined as i) the second
most common TMS target in prior literature studies, ii) the second
node with the shortest path length or highest weighted nodal de-
gree to the network of interest, iii) the second node reaching
maximum network engagement according to NCT predictions.

Importantly, we implemented a model based on linear dy-
namics [22,49]. The assumption of linearity does not accurately
reflect neuronal dynamics, which are inherently nonlinear in most
processes. However, studies have shown that linear models can
account for a significant amount of the variation in brain activity as
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Fig. 2. Theoretical Background and Applications. A. NCT is a mathematical approach for the study of the controllability of dynamical systems. NCT queries our ability to drive a
system from any initial state to any desired final state in finite time via the application of suitable input signals. Different transitioning trajectories can be realized depending on the
target site, the input signal, and the state space. A more efficient trajectory is characterized by less control energy and a more direct path, which ultimately brings the system closer
to the desired state. B. In our simulations, the input sites could be equal for all subjects, based on literature-derived sites of stimulation, or they could be personalized based on: a
graph theory approach selecting the nodes with the shortest path length or the highest nodal degree to the other nodes of the network; or based on data-driven NCT predictions of

the best stimulation sites for each subject.
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measured by fMRI [50]. Linear dynamics can successfully approxi-
mate the full nonlinear system locally. Indeed, if a system is locally
controllable along a specific trajectory in the state space, then the
corresponding nonlinear system is also controllable along the same
trajectory [51]. Simulations have demonstrated that predictions
from linear control are consistent with neuronal networks with
Wilson-Cowan nonlinear dynamics [52], and that the nonlinear
controllability of motifs with non-identical link weights exhibits
the same properties as its linear and structural counterpart [53].
Furthermore, a recent study assessed the ability of various linear
and nonlinear models to capture macroscopic brain dynamics, and
came to the surprising conclusion that linear approaches outper-
form the nonlinear models in terms of predictive power, compu-
tational complexity, and the extent of residual dynamics
unexplained by the model [54]. This may be due in part to micro-
scopic dynamics being masked at the macroscopic level by aver-
aging over space and time. Network control approaches in the
human brain continue to produce results derived from the
assumption of linearity that are relevant to and consistent with
brain dynamics and behaviour [20—22,55—58].

Overall, we compared the ability of the aforementioned in silico
stimulation scenarios to target each resting-state network (VIS,
SMN, DAN, VAN, LIMB, FPN and DMN), as well as two networks of
high clinical and experimental relevance. In this regard, a term-
based meta-analytic search by means of Neurosynth (https://
neurosynth.org/) was conducted to derive the activation map of
the cerebral areas most often associated across studies on
Depression (key term: “depression”), as well as an activation map
of the areas underlying Cognitive Control (key term: “cognitive
control”), whose dysfunction is often targeted in stimulation pro-
tocols for both depression [59] and other psychiatric conditions,
such as obsessive compulsive disorder [60].

For our statistical tests, within-subject repeated measures ana-
lyses of variance (ANOVAs) were run in MATLAB 2017b to control
for significant differences across the 9 stimulation conditions, tar-
geting: i) two commonly employed target sites according to the
literature, either in isolation or simultaneously (respectively named
trad-1 and trad-2); ii) the stimulation of two path length-derived
nodes (PL); iii) the stimulation of two nodes with the highest
nodal degree (ND); iv) and the targeting of either one or two nodes
based on NCT predictions (NCT-1 and NCT-2) (Fig. 2B). As a result,
we always compared the effect of stimulating multiple nodes (i.e.,
two) across all conditions (traditional, graph-derived, NCT-derived)
to ensure that benefit of one stimulation scenario over the others
did not simply arise from having multiple stimulated sites. In
addition, in order to control for possible effects of networks' to-
pology and spatial proximity, we further compared the effect of
stimulation of two types of randomly rewired networks: (i) pre-
serving weight, degree, and strength distribution (Topological Null
Model-TN); and (ii) preserving the relationship of weight and dis-
tance between nodes (Spatial Null Model-SN). TN models have the
advantage of maintaining the degree distribution whilst reshuffling
network structure, whereas SN models retain the strength-distance
relationship observed in spatial brain networks and shuffle the
network's topological structure [61,62]. TN models were con-
structed by means of the Brain Connectivity Toolbox [47], whereas
SN models were constructed based on the available code from
Roberts et al., 2016 [62] as previously reported in the literature [22].

Post-hoc comparisons were then run to specifically look at each
single contrast in our model. A significant threshold of & = 0.05 was
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used to reject the null hypothesis and Bonferroni correction was
applied to control for multiple comparisons.

3. Results
3.1. Network engagement

We tested the use of NCT predictions to identify sites of stim-
ulation for 7 functional networks (VIS, SMN, DAN, VAN, LIMB, FPN,
DMN) according to the Schaefer Atlas parcellation [43]. To control
for possible effects of networks’ topology and spatial proximity, we
further compared the effect of stimulation of two types of randomly
rewired networks (TN and SN). For all networks tested, all in silico
stimulations always resulted in a significantly lower amount of
activated nodes compared to the individualized stimulation based
on NCT predictions. An example of the typical trajectories of acti-
vated nodes is reported in Fig. 3 for the DMN, where the sequence
of activated nodes is shown for one exemplificative subject
following the stimulation the NCT target (propagation outreach for
the other conditions is shown in Fig. S1 in the Supplementary
Materials). All four approaches successfully activate nodes
belonging to the DMN; however, the NCT approach displays the
highest specificity in the activation of DMN nodes compared to the
activation of nodes belonging to any other brain network (Fig. 3D).
Furthermore, in accordance with prior literature, stimulation of
two nodes always resulted in greater network activation compared
to targeting only a single node (Fig. 3C). Altogether, targeting of the
DMN showed at least one significant difference between conditions
(F(g3192) = 2159.7, p < 0.0001). Subsequent post-hoc comparisons
revealed that targeting of traditional stimulation sites, such as the
left precuneus [63,64](PC-1) (Mpc.| 11.02, SD pcg = 1.63;
p < 0.0001); the right medial prefrontal cortex [64](PFC-r) (Mpgc-
r = 14.06, SDpgc.r = 1.2; p < 0.0001); or of both sites simultaneously
(Mpc. & prcr = 14.28, SDpc. &+ prcr = 1.24; p < 0.0001) activated
fewer nodes compared to our NCI-2 approach (Mncr = 18.71;
SDncr = 1.19). Similarly, network topological measures alone were
not able to reach the levels of DMN activation achieved by NCT
(Mp. = 15.68, SDp. = 1.41, p < 0.0001; Mnp = 14.9, SDnp = 2.18,
p < 0.0001), nor were the TN (M1 = 6.95, SDN = 2.05; p < 0.0001)
and SN models (Msy = 14.2, SDsy = 1.78; p < 0.0001) (Fig. 3C).

For the LIMB network, the model showed at least one significant
difference between our conditions (Fg3192) = 4102.5, p < 0.0001).
Subsequent post-hoc comparisons revealed that the targeting of
traditional stimulation sites, that is, the dorsolateral prefrontal
cortex for the left and right hemispheres [65,66] (DLPFC-1 and
DLPFC-I‘) (MDLPFC—I = 1, SDprprc-1 0.34; p=<0.0001; Mpyprc-
r = 0.71, SDprppcr = 0.58; p=<0.0001), as well as the targeting of
both sites simultaneously (Mpiprc.l + DLPFC-r 0.79, SD prprc-
1 + prpecr = 0.40; p < 0.0001) resulted in significantly fewer acti-
vated nodes compared to our NCT-2 approach (Mncr = 8.48,
SDncr = 1.05). Stimulation based on PL (Mp, = 5.6, SDp. = 1.13;
p < 0.0001) or ND (Mnp = 4.68, SDnp = 1.33; p < 0.0001) also
resulted in a smaller number of activated nodes, similar to what
happened with the stimulation of TN (My = 2.57, SDtny = 0.9;
p <0.0001) and SN (Msn = 7.86, SDsy = 1.85; p < 0.0001) models. In
regard of the FPN, the model showed at least one significant dif-
ference between our conditions (F(g3192) = 1336.6, p < 0.0001).
Subsequent post-hoc comparisons revealed that stimulating the
left superior parietal lobule (SPL-1) or the PFC-r [67,68](Mspr-
1 = 4.89, SDsp;| = 0.97, p < 0.0001; Mpgc.r = 8.35, SDpgc.r = 1.77;
p < 0.0001), or stimulating both sites simultaneously
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*#xp < 0.001.

(Msp]_ + PFC = 748, SD SPL + PFC = 1.23; p< 0.0001) resulted in fewer
activated nodes compared to our NCT-2 approach (Myct = 13.04,
SDncer = 1). Stimulation based on PL (Mpy = 8.87, SDpp = 2.31;
p < 0.0001), ND (Mnp = 9.82, SDnp = 1.93; p < 0.0001), TN and SN
models (Myny = 4.91, SDiy = 1.88; p < 0.0001; Mgy = 9.64,
SDsy = 1.69; p < 0.0001) also resulted in fewer activated nodes
compared to NCT-2. As for the DAN, the model showed at least one
significant difference between our conditions (Fg3192) = 1907.8,
p < 0.0001). Subsequent post-hoc comparisons revealed that
stimulation of SPL-1 and of the right inferior frontal gyrus (IFG-r)
[69](M5p]__1 = 743, SDsp;| = 1.1; p< 0.0001; Mipg.r = 4.97, SDigg-
r = 1.15; p < 0.0001), of both sites simultaneously (Mspy | rc = 7.3,
SDsp]_ + IFG = 1.47; p < 0.0001 ), PL (Mp]_ = 12.18, SDp. = 1.73;
p < 0.0001), ND (Mnp = 12.15, SDp. = 2.15; p < 0.0001), TN and SN
models (Myy = 5.15, SDty = 1.75; p < 0.0001; Mgy 11.45,
SDsn 2.08; p < 0.0001) resulted in fewer activated nodes
compared to our NCT-2 approach (Mncr = 14.82, SDncr = 1.87). In
regards to SMN stimulation, the model showed at least one sig-
nificant difference between our conditions (Fg3192) 1791.9,
p < 0.0001). Subsequent post-hoc comparisons revealed that
stimulation of the left and right primary motor cortices (M1) [70]
(Mpm1. = 13.53, SDp1. = 148, p < 0.0001; Mpyq.r = 14.83, SDw1-
r 1.59; p < 0.0001), of both sites simultaneously
(MM1_1 + Ml-r = 17.96, SDM1_1 + Ml-r = 1.33; p < 0.000‘1)Y PL
(MpL = 14.79, SDp. = 1.74; p < 0.0001) and ND (Mnp = 15.8,
SDnp = 2.03; p < 0.0001) conditions, TN and SN models
(MqN = 5.80, SDn = 1.78; p < 0.0001; Msy = 13.74, SDsy = 3.76;
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p <0.0001) resulted in fewer activated nodes compared to our NCT-
2 approach (Mnct = 19.14, SDnct = 1.26). For the VIS network, the
model showed at least one significant difference between our
conditions (Fg3192) = 2738, p < 0.0001). Subsequent post-hoc
comparisons revealed that stimulation of the primary visual cor-
tex for the left or right hemispheres in isolation (O1 and 02) [71]
(Mp1 = 16.14, SDo1 = 2.06; p < 0.0001; My, = 17.26, SDy; = 1.69;
p < 0.0001) or of both sites simultaneously (Mg1,02 = 23.1,
SDo1402 = 1.28; p < 0.0001) resulted in fewer activated nodes
compared to our NCT-2 approach (Mncr = 23.68, SDncr = 1.3).
Similarly, stimulation based on PL (Mp. = 18.93, SDp. = 2.96;
p <0.0001), ND (Mnp = 21.64, SDnp = 3.16; p < 0.0001), TN and SN
models (Mrn 717, SDN 2.15; p < 0.0001; Msy 21.74,
SDsy = 2.3; p < 0.0001) also resulted in fewer activated nodes
compared to NCT-2. Finally, for the in-silico prediction of VAN
stimulation, the model showed at least one significant difference
between our conditions (F(g 3192) = 1688.1, p < 0.0001). Subsequent
post-hoc comparisons revealed that stimulation of the right
temporo-parietal junction (TPJ-r) or of the right middle frontal
gyrus (MFG—I') [72] (MTpJ_r = 6.06, SDTpJ_r =0.9, p< 0.0001; Mmpg-
r = 3.7, SDMrcr = 0.87; p < 0.0001), of both sites simultaneously
(MTpJ + MFG = 6.55, SDTpJ + MFG = 0.9; p < 0.0001 ), PL (Mp]_ = 6.55,
SDpL = 0.99; p < 0.0001), ND (Mnp = 6.36, SDnp = 1.43; p < 0.0001),
TN and SN models (Mry = 3.55, SDiy = 1.55; p < 0.0001;
Msn = 6.94, SDsy = 1.3; p < 0.0001) resulted in fewer activated
nodes compared to our NCT-2 approach (Mpcrt 10.65,
SDner = 0.98). All the reported results survived Bonferroni's
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Fig. 4. Statistical comparisons of the efficacy of stimulating scenarios and their controls. Efficacy of the different stimulation approaches was computed by looking at how many
nodes, within the first 10%, belonged to the network of interest following the stimulation. Across all the stimulated networks, we observed that the simultaneous stimulation of 2
nodes always induced greater network engagement than the stimulation of a single node. For all the networks tested, the stimulation of 2 nodes derived from NCT predictions
always resulted in a greater number of nodes activated with respect to Trad, PL and ND conditions. Stimulation of topological and spatial null models was also run, to control for the
effects of topology and spatial proximity of the nodes in guiding the effect of the simulations.

correction for multiple comparisons. The full list of contrasts with
the corrected p-values can be found in the Supplementary Table S1.
Boxplots for each network stimulation scenarios are reported in
Fig. 4.

3.2. Network specificity

To control for the specificity of our NCT stimulation scenarios,
we computed the amount of activation of nodes belonging to the
network of interest compared to the activation of nodes belonging
to other resting-state networks (Fig. 5). Overall, we observed that
specificity for targeting the DMN was high, with higher activation
(91%) for nodes belonging to the DMN and the remaining per-
centage of activated nodes belonging mostly to the FPN (6.23%) and
LIMB (1.23%) networks. Targeting of the FPN also resulted in 78.83%
of target specificity, with less activation of nodes belonging to the
VAN (13.11%) and DMN (6.74%) networks. VIS network targeting
reached the highest specificity, with 98.4% activation of nodes
belonging to the VIS network and the remaining 0.76% to the DMN
instead. Stimulation of the LIMB network also reached an 83.55%
specificity, with less activation of nodes belonging to the DMN
(13.12%) and FPN (1.67%) instead. As for the SMN, its targeting
resulted in 59.22% activation of its nodes and 39% activation of
nodes belonging to the DAN instead. Similarly, stimulation of the
DAN resulted in 57.67% activation of DAN nodes, 23.64% activation
of FPN nodes and 14.93% activation of SMN nodes. Finally, VAN
stimulation resulted to be the least specific (46.12%), with many of
the activated nodes belonging to the SMN (33.48%) and to the DMN
(13.84%). A mean average Pearson's correlational matrix was
computed, looking at the amount of shared white matter fibers
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connecting all networks (Fig. 5). High correlational values were
observed for the white matter bundles connecting the SMN, VAN
and DAN networks (rSMN <> DAN — 0.90; ISMN <>VAN = 0.4, I'DAN
< VAN 0.31), as well as between the DMN and FPN (rpun
< ppn = 0.47), which could explain the tendency of such networks'
nodes to co-activate.

3.3. Targeting hot-spots of clinical and research relevance

To test the efficacy of NCT predictions applied on non-resting
state networks, we derived meta-analytic maps from studies on
Depression and Cognitive Control. These activation maps were used
as target in our simulations to determine if NCT predictions could
provide insight on targeting of widespread cortical regions that are
the ongoing focus of several TMS trials on both patients and healthy
participants. For both scenarios, a significant difference was re-
ported across conditions (Depression: Fg3192) = 1629.2, p < 0.0001,
Cognitive Control: Fg3192) = 1687.6, p < 0.0001). The number of
cerebral areas commonly reported across studies on Depression
(Fig. 6) that we were able to reach in this in silico stimulations was
smaller following traditional stimulation of the DLPFC-I or of the
right dorsomedial prefrontal cortex (DMPFC-r) [73] (Mprpgc-
1 = 6.58, SDD]_[J]:C_l = 1.25: p < 0.0001: MDMPFC—r = 8.16, SDDMPFC-
r 132; p < 0.0001), of both sites simultaneously
(Mpvrprc + pmprc = 8.49, SDprprc + pmprc = 0.97; p < 0.0001), of PL
(Mp. = 10.27, SDp. = 1.87; p < 0.0001) or ND (Mnp = 7.75,
SDnp = 2.26; p < 0.0001) sites, TN and SN models (Mpny = 4.39,
SDN = 1.76; p < 0.0001; Mgy = 12.73, SDsy = 2.25; p < 0.0001)
compared to the number of sites we could reach with NCT-2 targets
(Mnct = 13.71, SDnct = 1.05).
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Similarly, reaching of Cognitive Control-related regions (Fig. 7)
was achieved less following stimulation of the DLPFC-1 (Mpypgc-
| = 13.78, SDpiprct = 1.7; p < 0.0001) or of the left Anterior
Cingulate Cortex (ACC-1) [60] (Macc-1 11.75, SDacc-l 1.49,
p < 0.0001), of both sites simultaneously (Mpipec 4 acc = 15.1,
SDpiprc + AcC 116; p < 0.0001), of PL sites (Mpp 16.19,
SDp. = 1.87; p < 0.0001), ND sites (Mnp = 14.36, SDnp = 4.16;
p < 0.0001), or of TN and SN models (Mry = 8.93, SDN = 2.14;
p < 0.0001; Msy = 18.35, SDsn = 1.75; p < 0.0001) compared to the
number of activated nodes by NCT-2 (Mnct = 21.62, SDncr = 1.08).
All the reported results survived Bonferroni's correction for mul-
tiple comparisons. The full list of contrasts with the corrected p-
values can be found in the Supplementary Table S1.

In accordance with the notion that cerebral signals travel along
structural connections, the mean path of propagation following
NCT sites stimulation were observed to overlie with connectivity
bundles originating from the targeted node (Fig. 6 D, E; Fig. 7 D, E).

3.4. Personalization of stimulation and test-retest reliability

One of the main objectives of this study was to compare the
efficacy of in silico stimulation scenarios tailored at the individual
level, compared to group-derived stimulation sites derived from
traditional stimulation paradigms in the literature. In this regard,
and as hypothesized, great interindividual differences were
observed in the optimal NCT stimulation site capable of maximizing
network activity, with consequently great interindividual differ-
ences in the recruited white matter bundles (Fig. 8).

Within the HCP sample, 45 participants underwent twice the
acquisition of DTI and fMRI data at 4.7 + 2 months interval for test-
retest purposes. As such, we were able to determine the reliability
of our in silico simulations by looking at the Pearson's correlation
between the average number of nodes activated per condition in
each visit. As observed in Fig. 9, high test-retest reliability was
observed for all TMS simulations. Indeed, across all networks
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tested, the average number of nodes activated by each stimulation
condition was highly consistent across visits. The boxplot reporting
the mean and SD for each retest condition in every network tested
is reported in the Supplementary Material (Fig. S2).

4. Discussion

In the present study, we tested if NCT could be employed for the
identification of nodes capable of guiding the brain network from
an initial state toward a desired final state. In this regard, topo-
logical models have been proven to be highly predictive of
perturbation patterns [19] and hence there is sufficient rationale to
believe they could be employed for individualized target selection.
In the brain, electrical inputs are known to travel along the struc-
tural connections of white matter tracts linking brain regions [75].
As such, models aware of the underlying communication pathways
that support information transfer in the brain are likely to provide a
more informed guess on the optimal starting point to reach desired
brain areas or states [24]. Our findings corroborate this notion
proving that the level of network activation following the stimu-
lation of traditional or control sites is lower than what observed
when NCT-derived sites are chosen as input, at least in these in
silico scenarios. Secondarily, our models predict that the use of two
input nodes, compared to the use of a single input node, holds
higher chances of engaging more nodes of interest. The use of
multiple target nodes over a single one has already been addressed
in controllability studies, which claim that at least 16%—25% of
nodes should be used to exert complete control on a complex
dynamical system like the brain [23]. It is therefore not surprising
that we find two nodes outperform one node when we consider
stimulation pathways to functional networks in the brain. To
ensure the direct relevance of our results to TMS studies, we chose
not to test the effects of stimulating more than two regions
simultaneously. Indeed, at present, dual coil studies represent the
only condition whereby multiple cortical sites are stimulated via



A. Menardi, D. Momi, A. Vallesi et al. Brain Stimulation 15 (2022) 1418—1431

A B

DMN targeting Shj 1
@#

',( ’ 1 U Fiber
J Z

#1 Corpus Callosum

Individual NCT sites Shj 2
L
v 4 E
tg&~ L, it \ .
0‘g\t/{~ Ls‘ S

#1 Corpus Callosum

R
4 Vv"._ ¢
& n 41 1 Shj 3
Ped
% )Y ~
( >n : \y (1// &=
A #1 U Fiber

Fig. 8. Personalized Target Selection. A. NCT approaches allow to identify highly personalized stimulation sites that ultimately maximize individual network engagement (e.g.,
DMN network engagement). The size of the dots is proportional to the number of subjects sharing the same NCT stimulation site. B. The HCP tractography atlas [74] was used to
perform automatic fibers tracking and labeling. Five exemplificative subjects are shown, revealing the structural paths underlying the individual sites of stimulation, followed by 45
subjects' cumulative tractogram from the test-retest sample. The most prominent structural tract underlying stimulation sites is reported.

#1 Corpus Callosum

TMS, also known as cortico-cortical paired associative stimulation cortical networks and promoting specific behaviors [48,77], dual
[76]. Although they have been proven efficient in targeting specific coil approaches are not as often employed as single coil ones, as the

L
Test-Retest 45 HCP '3 (‘"f R
I 4 LMB FPN .
participants A 2 ‘ ~ DAN
N 9 13 16
o 4| Pearson’s r=0.99, p<.0001 / - Pearson’s r=0.97, p<.0001 /’ Pearson’s r=0.99, p<.0001 [ ]
o 14
DMN g’ g 3
20 § 6 E § 12 L]
Pearson’s r= 0.99, p<.0001 g s E <
g /. £ o g g
B - : 8 E
c [ ] = '
= 5 7 = o8
o : 3P
s 6
2 1
4 :
B 10 N 13 1 a
E 1 o 1 2 3 4 s L] 7 8 5 10 15
8 RETEST- activated nodesx RETEST- activated nodesx
6 L L L
6 8 10 12 u 16 18 20 <
RETEST- activated nodesx k/‘ SMN o ‘ s ‘;‘
’ ¢ - VAN
@ NCT-2 stimulation sites » 2 a -
Pearson’s r= 0.99, p<.0001 Pearson’s r= 0.99, p<.0001 ‘s r=
NCT-1 stimulation sites - P / 2 P 10| Pearson’s r=0.98, p<.0001
" % % » » " $ o
. PL stimulation sites 2. L 3
=]
e ° 2 5 ®
@ rLstimulation sites b b g,
g ® > L ]
z 2 k-
Trad-1 stimulation sites g g g
" V12 -
v =
@ Trad-2 stimulation sites g 1 ﬁ 10 £ s
L] 4
@ Trad-1+Trad-2 stimulation sites : (
- 3
. Spatial Null %6 8 10 12 14 16 18 20 ®s 10 15 20 25 3 . s N L L] L 3
RETEST- activated nodesx RETEST- activated nodesx RETEST- activated nodesx

Topological Null

Fig. 9. Test-retest reliability. High test-retest reliability was observed for all TMS simulations. The mean number of activated nodes per condition is shown, both at test and retest,
for 45 individuals. Across visits, the average amount of activated nodes by each simulation was found highly consistent, with an always greater number of activated nodes by the
NCT-2 stimulation condition.

1427



A. Menardi, D. Momi, A. Vallesi et al.

physical impediments of managing two machines simultaneously
limit their practicality [78]. Nevertheless, current approaches are
under development to overcome those limitations, making multi-
site stimulation a foreseeable option in the future [78].

It is worth noticing that the stimulation of multiple nodes based
on NCT predictions also outperformed stimulation of sites chosen
based on topological properties (path length and nodal degree). As
for the comparison between spatial and topological null models, we
observed that the former achieves higher network activation than
the latter, suggesting that the relationship between weight and
distance of the brain nodes is more important than degree, weight
and strength distribution in guiding propagation trajectories
[61,62]. Furthermore, we observed that the personalization of
stimulation sites appears to be more relevant in cognitive or high-
order functional networks, than on sensory networks (i.e., VIS and
SMN), where the average network engagement was relatively
similar between the traditional approach and the NCT simulations.
This finding appears in line with the notion that greater interin-
dividual variability is observed in high order, task-positive net-
works [79]— to the point that individual brain fingerprinting has
been suggested [8]— and thus they might be the networks which
would benefit the most from individualized targeting.

Our last conclusion is based on the evidence that substantial
differences exist in the level of engagement specificity across net-
works following stimulation. Indeed, high levels of precision can be
observed for most networks tested, but less following stimulation
of the SMN, DAN, and VAN, which tend to co-activate to some
extent (Fig. 5). In the present study, we indeed observed a strong
correlation between such networks in the number of white matter
bundles connecting them. Of interest, those networks have also
been observed to increase in their functional connectivity, from
childhood to late adulthood, as a function of the topological prop-
erties of their nodes [80]. This combined evidence suggests that
their strong structural and function internetwork connectivity
might underlie their tendency to co-activate, as they share many
pathways between their nodes. Indeed, the DAN, VAN and SMN
networks share important functional roles, especially in the top-
down and bottom-up control of attention and the re-orienting to-
ward relevant stimuli for the DAN and VAN networks, respectively
[81], and in the VAN control over SMN for the inhibition of
behavioral responses [82].

Finally, NCT predictions for the identification of stimulation sites
in the brain were not only tested on functional network engage-
ment, but also as an approach to test the feasibility of reaching
widespread regions commonly reported across clinical and
research studies. We took as an example regions reported in studies
on depression and cognitive control, which are at the center of
many current TMS clinical and experimental trials [59,60]. In the
past year alone, several studies have looked at the possibility to
personalize stimulation sites in depression [83—85], based on the
rationale that current applications, although effective, are limited
by the fact that the optimal stimulation target remains unknown
[83]. As a result, current efforts have tried to personalize stimula-
tion either based on individualized parcels from neuroimaging data
[84], or based on the mapping of symptoms’ clusters [85].

In the present study, we offer an alternative to such approaches,
which entirely relies on simulations run on topological models. The
first advantage is that our NCT model can combine both functional
and structural information, which embeds the two most crucial
sources of information in stimulation paradigms: the initial state of
activity of the brain prior to the stimulation delivery, and the in-
dividual fibers’ map through which the signal will propagate. Sec-
ondly, since the NCT approach is based on simulations, it is possible
to a priori test all possible targets in the brain to observe the
induced effect on propagation and subsequently opt for the most
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desirable one(s). We want to stress that NCT models were indeed
optimized to achieve the highest network engagement and there-
fore should not come surprising that they achieve high results in
this direction. However, our hypothesis was that if the optimal
stimulation sites are already employed in everyday TMS proced-
ures, then we should not observe any difference between the sites
predicted by the NCT model and those used routinely. One could
also argue that the superior predicting performance of NCT is im-
putable to the fact that it comprises information captured by nodal
degree. However, we controlled for this possibility by comparing
stimulation based on NCT predictions to that of stimulating graph-
based models (PL or ND). Furthermore, we control that the
observed effects are not related to topographical properties or
spatial proximity of the nodes by means of topological and spatial
null models. Respectively, random graphs as built that preserve
weight, degree, and strength distribution (Topological Null Model);
or preserving the relationship of weight and distance between
nodes (Spatial Null Model). By testing them against the predictions
of NCT-derived stimulation sites we can rule out the possibility that
the observed effects are solely based on those factors. Since these
conditions were met, the present study highlights the possibility to
improve both the efficiency and the reliability of targeting by
means of predictive models based on the individual brain topology.
Future studies should test NCT predictions via real TMS stimula-
tions, comparing the effects of prior targeting choices with the one
suggested by the model. Finally, even though our the NCT model
was run without boundaries by testing all possible stimulation
entries at the whole brain level, for most of the participants the
predicted best stimulation site appeared to fall within the target
network. As an example, targeting of the DMN resulted in 90% of
the optimal stimulation nodes to fall within the target state. For
other networks, like the FPN, SMN or DAN, percentages shifted
around the 82%, 83% and 70% respectively. This result highlights the
high modularity of the brain network by suggesting that it is easier
to access a module by means of intra-network connections rather
than inter-networks pathways. Such evidence might guide future
studies in employing TMS to corroborate and further personalize
network parcellations at the single subject level, a desirable step in
the future of personalized medicine approaches [86].

The present study is not free of limitations. Indeed, we imple-
mented a model based on linear dynamics, which is not repre-
sentative of real brain dynamics. Nevertheless, studies continue to
highlight the relevance of results in the human brain derived from
the assumption of linearity [54]. Second, we did not impose cortical
restrictions for the model, meaning that sometimes NCT simula-
tions predict subcortical structures as the optimal stimulation
nodes, which might not be easily reached via standard TMS. Indeed,
sites are selected individually based on modeled stimulation sce-
narios, resulting in few subjects (out of the 400 tested) that have
their optimal stimulation site located in regions of the brain that
would be either inconvenient or uncomfortable to reach in real life
TMS. As an example, to reach target states like the FPN, SMN or DAN
network, the 80—99% of subjects have ideal target nodes in acces-
sible locations of the brain. For the DMN, an example of the location
of each individual optimal stimulation site can be found in Fig. 3,
panel A. The variability in the location of the stimulation site is a
crucial element in our simulations, as well as a cardinal point in this
study, which we wish to stress. This is because it highlights the fact
that for some individuals, the optimal driver node to ensure a state
transition toward a desired direction (e.g., induce activation of a
brain network, like the DMN) is located in less convenient regions
compared to other individuals. This could represent an early
disadvantage for some participants in a study, and it might add up
to other known factors discriminating responders to non-
responders in TMS interventions [87]. In this sense, to be able to
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provide knowledge to the investigator on such individual condi-
tions might help him/her in developing alternative strategies
aimed at maximizing the chances of such individuals of receiving
the best stimulation possible. Indeed, the fact that regions of in-
terest in neurostimulation interventions are in hard-to-reach lo-
cations of the brain is not new. The most famous example is the
relatively recent discovery of the role of the subgenual cingulate
cortex in modulating depressive symptoms [83]. To overcome the
limit of TMS not being able to reach deep limbic regions, recent
studies have leveraged on personalized connectivity maps to
identify regions in the frontal cortex that are connected to such
seed, as a possible alternative. The same principle could hence been
applied for individuals whose optimal stimulation site, as identified
by the model, falls in inconvenient or uncomfortable brain loca-
tions, although promising alternatives might come from deep TMS
devices [88]. Finally, the principles behind control theory have a
wide applicability in brain stimulation interventions that expand
beyond the use of TMS in humans, and include deep brain stimu-
lation by means of intracortical electrodes [22], or controlled lesion
approaches in animal models [89].

On a final note, future models might achieve an even higher
amount of personalization by embedding additional information,
such as oscillatory dynamics from electroencephalography
recording, or individual target maps based on metabolic patterns,
as via positron emission tomography [90,91]. Nodes’ oscillatory
frequencies and the strength of their anatomical connectivity have
also been investigated to explain the distinct effects of stimulation
on the functional coupling of the stimulated node to the rest of the
brain [92,93]. In particular, both computational models and
empirical stimulation studies support the notion that it is possible
to induce large-scale neural changes in functional connectivity
following the stimulation of a single node, but that those occur
differently as a function of the intrinsic properties of the stimulated
node [92]. Of interest, it shows that peripheral nodes, which are
characterized by a weaker connectivity profile with the rest of the
brain and hence show higher flexibility, have the highest chance of
inducing greater changes in functional connectivity compared to
central brain hubs, which are instead more hardcore and thus more
resilient to perturbation [92]. These differences lead them to
behave differently when exposed to the same stimulation protocol
[92,93]: for example, inhibitory stimulation results in an increase in
the functional coupling of peripheral nodes with the rest of the
brain because it acts by decreasing their high frequency oscillatory
rate thus making their activity more similar to the slower dynamics
of the rest of the brain. Opposite, inhibitory stimulation applied on
the slow oscillatory activity typical of core hubs helps in further
decreasing their activity pattern and results in their functional
disconnection with the rest of the brain [92]. Considering the
importance of such findings, future studies should pay extra care in
the modeling and testing of brain stimulation as a function of
oscillatory brain dynamics at the time of stimulation. In our study,
we informed the model on the underlying activity state of the brain
by means of the BOLD signal, but future studies might need to
consider online EEG recordings instead, which are more ideal for
such purpose. Overall, we believe the present work has highlighted
the possible use of multidisciplinary efforts in promoting person-
alized intervention, possibly opening the road for future applica-
tions in TMS studies.

5. Conclusions

The possibility to directly interact with the brain and manipu-
late its activity is becoming concrete thanks to noninvasive brain
stimulation approaches. In order to optimize the efficacy of stim-
ulation scenarios, topological models might be employed for the
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prior individualization of input nodes with the highest chances of
recruiting regions of interest based on their spatial proximity and
structural connectivity. The present work hence suggests that
knowledge of the individual tractogram and activity state are useful
to optimize stimulation efforts and further opens the way to guided
state transitioning.
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