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Pagerank, a network-based diffusion algorithm, has emerged as the leading method to rank 
web content, ecological species and even scientists. Despite its wide use, it remains unknown 
how the structure of the network on which it operates affects its performance. Here we  
show that for random networks the ranking provided by pagerank is sensitive to perturbations 
in the network topology, making it unreliable for incomplete or noisy systems. In contrast,  
in scale-free networks we predict analytically the emergence of super-stable nodes whose 
ranking is exceptionally stable to perturbations. We calculate the dependence of the number  
of super-stable nodes on network characteristics and demonstrate their presence in real 
networks, in agreement with the analytical predictions. These results not only deepen our 
understanding of the interplay between network topology and dynamical processes but also 
have implications in all areas where ranking has a role, from science to marketing. 
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Originally introduced to rank web pages in the world wide 
web (www)1, pagerank, a network-based diffusion algo-
rithm, today is not only at the heart of Google and other 

search engines2 but also the method of choice for ranking an exten-
sive array of data in a wide range of network environments. It is used 
to rank physicists based on their citation patterns3,4, disease-causing 
genes based on protein–protein interactions5, academic doctoral 
programs based on alumni placement6, roads or streets in terms of 
traffic7, ecological species based on their position in the food web8, 
highlight cancer genes in proteomic data9 and even to disambiguate 
words in lexical semantics10. The algorithm’s popularity lies in  
both its perceived effectiveness and its easy to understand philo-
sophy: rather than ranking objects based on difficult-to-measure 
intrinsic qualities, such as the utility of a webpage or the creativ-
ity of a researcher, it exploits the collective wisdom encoded in the 
network the object is part of, interpreting each link as an inherent 
vote.

Current advances in the statistical mechanics of complex net-
works11–18 have shown that the systems on which pagerank operates 
have significant differences in their network topology: some, such as 
the www, are scale-free19,20, others, such as food webs, display a mix-
ture of exponential and fat-tailed degree distributions21; the under-
lying networks have different sizes, average degree, path length, 
degree correlations22,23 and community decomposition24–26. These 
topological differences are known to affect most network-based 
processes, from epidemic spreading27,28 to diffusion and network 
robustness29–34. Yet the role of the underlying network structure in 
the effectiveness of pagerank remains unknown, prompting us to 
ask: could pagerank be inherently more accurate for some networks 
than for others? The key role ranking has from information retrieval 
to marketing makes this a question of major practical importance, 
affecting many aspects of our information society35. Although the 
stability of pagerank to perturbations has been studied in computer 
science36–39, we will show here that by focusing on the ranking stabil-
ity of the top nodes we can obtain a series of fundamental results, 
that reshape our understanding of ranking stability. In particular, 
we find that, thanks to the fat-tailed nature of the degree distribu-
tion, a few super-stable nodes can emerge whose ranking becomes 
independent of what other nodes connect to them. We demonstrate  
the presence of such super-stable nodes in several real systems,  
from the www to citation networks.

Results
Pagerank algorithm and diffusion. The pagerank of a node in a 
network of N nodes with adjacency matrix Aij can be calculated 
from 

p i N A p j k jt
j

ij t( ) ( )/ ( )/ ( ),= − + ∑ −1 1a a out

where kout (j) is the number of outgoing links from node j and α is a 
reset parameter1. Equation (1) describes a diffusion process, where 
pt(i) is the frequency of visitation of node i by a particle at time step t 
that moves along the links of the network (encoded in the adjacency 
matrix Aij) with probability α and jumps to a randomly chosen node 
with probability 1 − α. The stationary state of this diffusion process is 
the pagerank p(i) of node i, determining its ranking relative to other 
nodes. In addition to its link to diffusion, mapping equation (1) to 
a Schrödinger-like wave equation helps elucidate the localization 
properties of the web graph40,41.

The central hypothesis of the pagerank algorithm is that a link 
from a node i to node j serves as an ‘endorsement’ of node j by i. 
Moreover, the status of the recommending node is important—a 
letter of recommendation from a Nobel Laureate (that is, a node 
with high pagerank pt − 1(j)) carries far more weight than 10 letters 
from academics of lesser prominence. However, if the Laureate has 

(1)(1)

drafted a large number of recommendations for various candidates 
(has a high kout (j)), then his (her) status as a recommender drops.

Pagerank typically operates on networks that are either mapped 
incompletely, such as the www42, or contain many false positives and 
negatives, such as protein interaction networks43, raising a funda-
mental question: is the ranking of a node stable relative to other 
nodes in the face of such considerable network perturbations?

Ranking stability under degree-preserving perturbations. As 
random perturbations, from network incompleteness to noise, 
leave the relative degrees of the nodes largely unaltered, here we 
study the ranking stability under degree-preserving perturbations. 
This is achieved by randomly rewiring the network, while leaving 
the degree of each node (and hence the degree distribution P(k))  
invariant. This approach is also motivated by the fact that the  
leading contribution to the pagerank of a node is its in-degree44, 
therefore perturbations that randomly change a node’s degree 
render the algorithm useless.

The ranking of a node with rank m is considered stable under 
network perturbations if changes in its pagerank pm (where the sub-
script associates the pagerank to its rank, that is, the node with the 
highest pagerank has m = 1) leave the node’s ranking m unchanged. 
Denoting with σ (pm) the fluctuations in pm around its mean value 
〈pm〉 under different realizations of the degree-preserving perturba-
tions, the mth ranked node has a stable rank if 

s( ) ( ),p pm m≤ ∆

where ∆(pm) = pm − pm + 1. In other words, if the fluctuations in a 
node’s pagerank pm are small compared with the gap between its 
pagerank pm and that of the node ranked below it pm + 1, the per-
turbation will not lower its ranking. Note, that ∆(pm)/σ (pm) is a 
monotonically decreasing function in m; hence, if the gap exceeds 
the fluctuation for a specific rank m, then it will also exceed for all 
m′ < m. To see whether the stability criteria equation (2) is ever sat-
isfied, we calculated analytically the expected gap and fluctuations 
in the pagerank for networks with  different degree distributions 
(Supplementary Methods, Supplementary Figs S1 and S2). We 
find that for a scale-free network (P SF(k)~k − γ)19, the gap follows 
∆ ∆

SF( ) ( , )( )/( )p N f mm
SF= ×− − −a gg g2 1 , whereas for an exponential  

network (Pexp(k)~e − λk)45, we have ∆ ∆
exp exp( ) / ( )p N f mm = ×a .  

The fluctuations σ(pm) in scale-free networks follow 
s a gg g

s
SF SF( ) ( , )( )/ ( )p N g mm = ×− − −2 2 3 2 1 , whereas in exponential 

networks s a ls
exp exp( ) / ( , )p N g mm = ×2 . Therefore, the stability 

ratio for the two networks is 

∆SF SF SF( )/ ( ) / ( , ),/ ( )p p N F mm ms a gg= ×−1 2 1

∆exp exp exp( )/ ( ) / ( , ),p p F mm ms a l= ×1

where the complete expressions for F SF and F exp are provided in Sup-
plementary Methods. Note that although the stability ratio equation 
(3) for scale-free networks depends on the system size, N, for expo-
nential networks equation (4) is size invariant. The reason is that for 
an exponential distribution the top nodes have comparable degrees 
(Fig. 1a), whereas for a fat-tailed distribution (Fig. 1b) the degrees 
of the top nodes are well separated from each other. Indeed, the rela-
tive gap, (kmax − kmax − 1)/kmax − 1 between the two top-ranked nodes in 
exponential networks of size N = 104 is ~10 − 2 (Fig. 1c), whereas for 
scale-free networks it is 100 − 101, that is, two–three orders of mag-
nitude larger (Fig. 1d). Consequently in an exponential network, the 
pagerank distribution of the top nodes are practically indistinguish-
able (Fig. 1e), indicating that the identity of the first-, second- or 
third-ranked node is different for each configuration. In contrast, 
the pagerank of the top node is well separated from the pagerank 

(2)(2)

(3)(3)

(4)(4)
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of the second- and third-ranked nodes in a scale-free network  
(Fig. 1f), indicating that the top-ranked node remains the same for 
each network configuration, being insensitive to perturbations.

Equation (4) predicts that for an exponential network the gap 
between consecutive pageranks never exceeds the fluctuations, 
making the ranking rather sensitive to perturbations. In contrast, 
according to equation (3), for certain (N, γ and α) combinations in 
a scale-free network the stability criteria equation (2) is satisfied, 
predicting the existence of a finite set of nodes whose ranking is sta-
ble to network perturbations. We will call these nodes super-stable, 
which means that by virtue of the many links they have, their rank-
ing is independent of who points at them. Thus, degree-preserving 
perturbations do not alter their ranking, in contrast with the rest 
of the nodes in the network, whose ranking is sensitive to precisely 
which node points at them.

In Figure 2a,b, we show ∆(pm) and σ(pm) for the top-ranked 
nodes in scale-free networks with sizes N = 102 and 104. For N = 102, 
the fluctuations σ exceed the gap ∆ for any rank m, indicating the 
absence of nodes whose rank is stable to perturbations. However, 
for N = 104 nodes with m < mc, we have σ(pm) < ∆(pm), indicating that 
their rank is stable. In general, the stability ratio ∆(pm)/σ(pm) scales 
with system size as N1/2(γ − 1) (a dependence absent in exponential 
networks), that is, the larger the scale-free network the more stable 
is the ranking of the top nodes. Therefore, it is easier to agree on 
the relative ranking of the top nodes in a large network than a small 
one, a rather counterintuitive result, given the cognitive limits that 
we face when we try to compare with each other a larger number  
of objects or services. The reason is that in larger systems the  
likelihood of the emergence of true outliers, whose pagerank is  
significantly greater than others, is greater.

Figure 2a,b suggests that the system size must exceed a critical 
size for super-stable nodes to emerge. Defining Nc as the minimum 
system size for which at least the top node’s ranking is stable (that 
is, ∆(p1)/σ (p1) ≥ 1), we find that for scale-free networks with degree 
exponents in the range 2 ≤ γ  < 3 we have Nc = 0, indicating that super- 
stable nodes emerge for any system size. For γ ≥ 3, however, only 
networks whose size exceeds 

Nc( ) ( ( )/( ) )/ ( )g a g g g≈ − − −1 3 1 2 2 1

can have super-stable nodes (Supplementary Methods). Therefore, 
γc = 3 represents a critical exponent for ranking stability, as illus-
trated by the (N, γ) phase diagram of Figure 2c: for γ < γc = 3, we 
always have at least one super-stable node, whereas for γ  >  γc only 
for N > Nc(γ) can super-stability emerge.

We also find that the number of super-stable nodes mc scales 
as mc~N1/(2γ − 1), which is a rather weak dependence—for γ = 3, to 
increase mc by a factor of ten, one needs to increase the system size 
by five orders of magnitude. For large N and 2  <  γ  < 3, the critical 
rank mc depends on γ as eA(γ − 2)/(2γ − 1) and for γ  3, it decays as γ − γ. 
The resulting γ dependence is summarized in Figure 2d, indicating 
that the number of stable ranks is relatively small for all γ and that 
it peaks in the vicinity of γc = 3. The peak becomes increasingly pro-
nounced for large N.

At the first glance, the peak at γc = 3 is unexpected: an increasing 
γ should decrease the gap as ∆(pm)~N1/2(γ − 1). Note, however, that for 
γ < 3 the fluctuations σ(pm) diverge as σ~N(3 − γ)/(γ − 1), whereas σ(pm) is 
asymptotically size independent for γ  >  3. Hence for γ  <  3, the gap is 
large but so are the fluctuations, whereas for γ > 3 the gap decreases 
and the fluctuations are effectively constant. The best payoff between 

(5)(5)

Figure 1 | The difference between exponential and scale-free distributions. The degree distributions of (a) four networks with exponential degree 
distribution P(k)~e − λk with λ = 0.2 on a log–log scale (inset: log-linear) and (b) four networks with scale-free degree distribution P(k)~k − γ with γ = 2.2, 
average degree 〈k〉 = 5 and size N = 104. (c, d) The magnified area of a and b showing the gap between the largest degrees. The difference between the 
largest degrees in a scale-free network is consistently large compared with the largest values in an exponential network. The legend shows the relative 
difference in the top two degrees’ ∆k  = (kmax − kmax − 1)/(kmax − 1) for both degree distributions. (e, f) The pagerank distributions of the top three nodes selected 
from each network type. For the power law distribution, the peak of each curve can be clearly distinguished in contrast with the exponential network where 
the top nodes’ pagerank are practically indistinguishable.
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these two regimes is in the vicinity of γc = 3, where σ2~(1/2)log(N π), 
resulting in the peak at γc (Supplementary Methods).

To test our analytical predictions, we generated networks with 
fixed P(k) using the configuration model46, and then ranked each 
node according to their pagerank. We perturbed the network by 
rewiring every edge (keeping the degree of each node unchanged) 
and determined the pagerank after each rewiring, helping us identify 
nodes whose ranking did not change as a result of the perturbation. 
We not only found that such nodes exist in the predicted topological 
regimes, but also plot the measured value of the critical rank mc as 
a function of the exponent γ for various system sizes in Figure 2d, 
confirming the predicted trend: for large N, the mc versus γ curves 

develop a peak in the vicinity of γc. Most importantly, the analytical 
and the numerical results agree that the number of super-stable nodes 
is rather small—less than ten for a system with ten million nodes.

Evidence of super-stable nodes in real networks. To see whether 
super-stable nodes emerge in real systems, we collected data for a 
variety of real networks, ranging from samples of the www to cita-
tion networks and identified the nodes whose ranking do not change 
under rewiring perturbations. For each network with a fat-tailed 
degree distribution, we observed a few super-stable nodes whose 
number closely agrees with the analytical prediction (Table 1). For 
networks with an exponential degree distribution, the data support 

Table 1 | Super-stable nodes in real networks.

Network N  Nc mc predicted mc measured

Scale-free
 Google web sample 875,713 2.5 0 4 1
 notre Dame web sample 325,729 2.1 0 3 3
 stanford web sample 281,903 2.1 0 2 2
 Berkeley–stanford web sample 685,230 2.1 0 3 3
 Hep-th citations 27,770 2.8 0 3 2
 Wikipedia admin. voting 7,115 3.3 50 2 1
 Amazon co-purchase 223,431 4.3 2,730 2 2
 mobile call graph 4,562,263 5.2 150,000 2 3

Exponential
 C. elegans neural net 307 —  0 1
 Food Web (Little Rock Lake) 183 —  0 0
 Food Web (silwood Park) 154 —  0 0

The second to fifth columns give the number of vertices in the network, N, the best estimate of the degree exponent of the degree distribution, γ, ‘—’ when the network has an exponential distribution, 
the predicted critical system size, Nc, the predicted critical rank, mc, and the measured mc provided by the perturbation scheme described in the text. The networks are, in order, a snapshot of a portion 
of the Google web, the notre Dame, stanford and combined Berkeley–stanford web sites, the citation network of papers found in the high-energy physics arXiv, the network of co-purchases from 
Amazon, the voting records for administrators in Wikipedia, the neural network of C. elegans and finally the Food Webs from Little Rock Lake and silwood Park. The sources and reference of each data 
set are provided in supplementary information.

Figure 2 | Analytical and numerical evidence for super-stable nodes. (a, b) Pagerank gap ∆(pm) and the fluctuation σ(pm) plotted as function of the rank 
m for two scale-free networks with the same exponent, γ = 3.5, and different system sizes, N = 102 and 104¸ showing the emergence of super-stability for 
larger N. (c) The (N, γ) phase diagram showing the stable and unstable regimes that emerge for γ > γc = 3. (d) The critical rank mc as a function of γ where 
the curves correspond to the calculated mc and the points represent the measured mc in numerical simulations on multiple networks. The peak near γc = 3 
is more pronounced as N increases, with different scaling behaviors above and below γc. (e, f) Pagerank distributions of the top-ranked nodes in the www 
(scale-free) and the food web (exponential) shown in Table 1. The separated curves correspond to mc (measured) values shown in the table. note that in 
the www the top-ranked nodes are clearly identifiable, whereas in the food web there are no super-stable nodes as predicted by the calculation.
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our prediction that super-stable nodes are absent. The only excep-
tion is the neural network of Caenorhabditis elegans, which has one 
super-stable node, because of the fact that its in-degree is separated 
by an order of magnitude from the rest of the nodes. Note that  
the probability to have such a high in-degree in this network is  
~10 − 9, indicating that this node, a motor neuron responsible for 
locomotion, represents a clear deviation from the expected degree 
distribution. The different behavior of the pagerank for the two 
network classes is illustrated in Figure 2e,f, where we show the 
pagerank distributions for the top nodes in two networks, the www 
(scale-free) and the food web (exponential). In line with our predic-
tions, for the www, the top nodes are clearly separated from the rest 
of the nodes, whereas for the food web the pagerank distributions of 
the top nodes are indistinguishable.

Probably, the strongest direct evidence supporting our predic-
tions comes from the Physical Review citation network. We used the 
publication history of papers published in the Physical Review jour-
nals from 1893 to 2009, allowing us not only to identify the super-
stable nodes from a static snapshot of the citation network, but also 
to track the emergence of super-stability in time. Two systematic 
changes in the network impact the number of super-stable nodes: (i) 
The network grows, increasing from N = 0 in 1892 to N = 449,673 in 
2009 (Fig. 3a). (ii) The degree exponent decreases from γ ≈ 5 in the 
1950s to γ ≈ 3 today (Supplementary Fig. S3). We therefore predicted 
the number of super-stable nodes in each decade between 1900 and 
2000, by incorporating the changes in N and γ, and also identified mc 

directly from the real data. We find that super-stable papers do not 
emerge before the 1950s, as the combination of high-degree expo-
nent and small N prohibits super-stability (Fig. 3b). However, as the 
degree exponent γ drops and N increases, between 1950 and 1960, 
N overcomes Nc, allowing for the emergence of the first super-stable 
paper (mc = 1). In the subsequent decades, mc gradually increases 
to four super-stable papers. As Figure 3b shows, the numerically 
identified mc closely follows the analytical predictions, the differ-
ence being at most one super-stable paper in a decade. Hence, the 
data set not only confirms the existence of super-stable publications 
in the Physical Review corpus (for the list of super-stable papers, see 
Supplementary Table S1), but also shows that their emergence in 
time follows closely the analytical predictions.

Our ability to identify super-stable nodes from a single snapshot of 
the network raises an important question: how stable is the ranking with 
time? To answer this question, we collected time-resolved ranking data 
for the citation and co-purchasing networks (Supplementary Table S2), 
allowing us to quantify the temporal stability of the top nodes. In the 
high-energy citation network, the super-stable nodes were identified 
from a sample containing all papers published in 2002. We find, however, 
that in the subsequent 7 years these two papers maintain their top rank-
ing, collecting the most citations each year. In contrast, the ranking of the 
rest of the papers, which do not demonstrate super-stability in the 2002 
sample, fluctuates widely (Fig. 3c). Similarly, for the Amazon co-purchas-
ing network, the two super-stable books continue to maintain their rank 
in samples collected on a weekly basis (Fig. 3d) and were the top ranked 
in a sample collected 6 years earlier (2005) as well. Additionally, in the 
Physical Review Corpus (Supplementary Fig. S4), most super-stable 
nodes maintain their status for a period of 6–10 years; some, such as the 
1957 paper on the BCS theory of superconductivity, show super-stability  
for three decades. Taken together, we find that super-stable nodes,  
identified from a single snapshot of the network, show a remarkable  
temporal stability, a feature not shared by other nodes in the system.

Discussion
In summary, we find that real networks with heavy-tailed degree 
distributions naturally lead to a set of super-stable nodes that have 
such a high number of ‘recommendations’ (in-degree) that their 
ranking becomes independent of who recommends them. This is 
somewhat unexpected from the perspective of the network architec-
ture: the scale-free nature of these networks normally implies a lack 
of objective criteria to distinguish hubs from non-hubs. The balance 
of rank stability and fluctuations do allow us, however, to identify a 
few hubs that respond in a distinct manner to perturbations.

Both our analytical predictions and numerical results indicate 
that the number of super-stable nodes is very small. As predicted 
by our scaling analysis, this number is largely unaffected by most 
network characteristics and only a significant increase in system size 
can increase their number. This suggests that across a large number 
of systems a small number of components (nodes) are bound to have 
a disproportionate role in the system. These nodes are often easy to 
identify: a simple link counting should place them at the top, limiting 
the usefulness of pagerank to rank nodes that are not super-stable.

It is often mentioned that the early success of Google compared 
with its competitors was not because of better coverage (which 
back then was inferior to that of the market leader Inktomi), but 
its pagerank algorithm, that offered a superior user experience 
through a better ranking of the relevant documents. Our results 
suggest that the success of pagerank was the inadvertent conse-
quence of the scale-free nature of the web graph. Had the web been 
an exponential network, the ranking provided by pagerank would 
have been unreliable given the incompleteness of the web graph. 
Indeed, in 1999, Google indexed only 7.8% of the web42 and even 
today its coverage is less than half of the indexable web. Yet, the 
scale-free property of the web graph leads to the emergence of a 
small number of super-stable nodes, for which a simple count of the 

Figure 3 | Temporal stability of super-stable nodes. (a) The number of 
papers published in the Physical Review corpus with time and the predicted 
critical system size Nc. (b) The evolution of the number of super-stable 
nodes in the same network, mc, as a function of size, N, and time (shown 
in parentheses). The squares correspond to the measured mc from the 
Physical Review citation network, whereas the curve corresponds to the 
analytical prediction using the appropriate N and the best estimate of γ for 
each decade. (c) The number of citations per year for the top ten ranked 
papers, where ranking is provided by applying pagerank to all high-energy 
physics papers published by 2002. The two predicted super-stable nodes 
(solid red lines) continue to be the top cited papers for almost a decade. 
The rest of the papers display considerable fluctuations in rank, even 
dropping out of the top 50 lists. (d) The evolution of the ranks of the top ten 
most co-purchased books in Amazon. The curves represent the evolution 
of books, ranked in the top ten in our first sample, over the subsequent 
weeks. Although the ranking of most nodes fluctuate, the top two nodes—
predicted to be super-stable (solid red lines)—maintain their top ranking.
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in-degree offers the correct relative ranking. As the www grew, the 
ranking stability at the top increased, making the top-ranked nodes 
even easier to identify. Therefore, counterintuitively, we find that 
the growth of the web, instead of making search more difficult by 
offering more hits, helps select clear winners, offering better rank-
ing clarity at the top.

Methods
Determining the gap and fluctuation in pagerank. Given a probability distribu-
tion p(x), we can determine the expectation value of the largest x after we draw N 
numbers from p(x). If we draw N numbers from a particular sample and one of 
them, xi, lies between the interval x + dx, the probability that there are no other 
numbers with a greater value than xi is given by p(x)dx × [1 − P(x)]N − 1, where P(x) is 
the cumulative distribution. As there are N ways of choosing xi, the total probabil-
ity is π(x) = Np(x)(1 − P(x))N − 1. Similarly, we can determine the expectation value 
of the mth largest number 〈x〉m. By definition, the mth ranked number has m − 1 
numbers above it and N − m below it, obtaining 

pm

m N m
x p x P x P x

B N m m
( ) ( ) ( ) [ ( )]

( , )
,= −

− +

− −1 1
1

where the denominator is the beta function. The expectation value is determined by, 

〈 〉 =
∞

∫x x x xm m0
p ( ) .d

Combining this with equation S1 (Supplementary Methods) gives the expectation 
value for the pagerank pm of a node ranked m. The gap between the pagerank of a 
node ranked m and the node ranked one place below it pm + 1 is ∆(pm) = pm − pm + 1, 
whereas the fluctuation σ(pm) is determined by substituting pm into equation S2. 
The details of the calculation are listed in Supplementary Methods.

Determination of critical values. According to the stability criteria equation (2), 
setting the ratio ∆(pm)/σ (pm) equal to one allows us to define a critical value for 
each relevant parameter, such that above that value we are in the stable regime and 
below in the unstable regime. We focus on two parameters: the critical system size 
N = Nc, which specifies the minimum system size for which any stable ranks exist, 
and m = mc, which denotes the maximum rank in the network that is stable for 
system size N > Nc.

To find Nc in a scale-free network, we note that the maximum value of equa-
tion (3) as a function of m is at m = 1. Furthermore, the ratio is a monotonically 
decreasing function in m; hence, if there is a critical value for the system size Nc, 
then it must at least hold for m = 1 and thus setting the ratio and m equal to one, we 
can derive an equation for Nc. The equation can only be solved numerically, but the 
scaling behavior of Nc can be extracted through a series of approximations (Sup-
plementary Methods). Similarly, the critical rank mc is derived by setting the ratio 
to one and N to a fixed value N > Nc. 
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