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The maxim of Jean Anthelme Brillat-Savarin, “Dites-moi ce que  
vous mangez et je vais vous dire ce que vous êtes”—‘you are 
what you eat’—remains as pertinent today, in the era of  

modern medicine, as it did in 1826. Indeed, the exceptional role 
of diet in health is well documented by decades of research in  
nutritional epidemiology, unveiling the role of nutrients and other 
dietary factors in cardiovascular disease, obesity, type 2 diabe-
tes mellitus (T2DM) and other common diseases1. Yet, the bulk 
of our current understanding of the way food affects health is 
anchored in the 150 nutritional components that the United States 
Department of Agriculture (USDA) and other national databases 
track2,3, and these nutritional components represent only a subset 
of the total pool of definable biochemicals in the food supply (see 
Supplementary Discussion 1).

The dark matter of nutrition
Consider garlic, a key ingredient of the Mediterranean diet: the 
USDA quantifies 67 nutritional components in raw garlic, indicat-
ing that this bulbous plant is particularly rich in manganese, vita-
min B6 and selenium4. However, a clove of garlic contains more than 
2,306 distinct chemical components5,6—from allicin, an organo-
sulfur compound responsible for the distinct aroma of the freshly 
crushed herb, to luteolin, a flavone with reported protective effects 
in cardiovascular disease7—which are listed in FooDB, a database 
representing the most comprehensive effort to integrate food com-
position data from specialized databases and experimental data. As 
of August 2019, FooDB records the presence of 26,625 distinct bio-
chemicals in food8,9, a number that is expected to increase in the 
near future (see Supplementary Discussion 2). This exceptional 
chemical diversity could be viewed as the ‘dark matter’ of nutrition, 
as most of these chemicals remain largely invisible to both epide-
miological studies, as well as to the public at large.

Where does this remarkable chemical diversity come from? 
Living organisms require a large number of biochemicals to grow 
and survive in their limited environments, well beyond the nutri-
tional components that we humans need in our diet. From an evo-
lutionary perspective, plants are characterized by a particularly 
rich chemical composition, mainly because they are unable to out-
run their predators; their defence is occasionally mechanical (for 
example, through the development of spikes) but is predominantly 

chemical, exercised through smell, taste and appearance. These 
chemical defences require an extensive secondary metabolism that 
produces a wide range of flavonoids, terpenoids and alkaloids. 
Polyphenols—a highly studied group of chemicals believed to be 
responsible for the health effects of tea and other plants—are the 
product of that secondary metabolism. The number of secondary 
metabolites is estimated to exceed 49,000 compounds, indicating 
that the 26,000 chemicals currently assigned to food represent an 
incomplete assessment of the true complexity of the ingredients 
we consume10. Multiple environmental factors, from light to soil 
moisture, fertility and salinity, can influence the biosynthesis and 
accumulation of such secondary metabolites11. Humans and other 
animals who can hunt for the necessary food sources do not have 
the ability to synthesize many molecules our metabolism requires, 
like ascorbic acid or alpha-linolenic acid, necessitating a source for 
these essential nutrients.

Overall, an analysis of USDA and FooDB data confirms that 
plants as a group have the highest chemical diversity, with approxi-
mately 2,000 chemicals detected in most examples. Yet, 85% of these 
chemicals remain unquantified, meaning that while their presence 
has been detected or inferred, their concentration in specific food 
ingredients remains unknown (see Supplementary Discussion 2). 
With garlic, for example, FooDB reports the chemical concentra-
tion for just 146 chemical components; the remaining 2,160 chemi-
cals listed in FooDB are not quantified5,6. We, therefore, raised the 
question as to whether the scientific literature contains valuable 
information on food composition beyond that currently compiled 
by food databases. Indeed, experimental and analytical projects 
focused on specific foods and foodborne chemicals are published 
on a daily basis, and only a small fraction of them inform databases. 
To unveil this potentially hidden knowledge, we developed a pilot 
project, FoodMine, that uses natural language processing to mine 
the full scientific literature for the purpose of comprehensively 
expanding all available scientific data on the biochemical composi-
tion of foods12.

FoodMine identified 5,676 papers from PubMed that poten-
tially report on chemicals pertaining to the detailed chemical com-
position of garlic. After filtering this list using machine learning, 
we manually evaluated 299 papers, of which 77 reported 1,426 
individual chemical measurements pertaining to garlic’s chemical 
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composition. Our pilot project recovered more unique quantified 
compounds than are catalogued by the USDA and FooDB together 
(see Supplementary Discussion 3 and Supplementary Table 1). For 
example, diallyl disulfide is known to contribute to garlic’s smell 
and taste, and is implicated in the reported health benefits of garlic, 
as well as in garlic allergy13,14. Although FoodMine found multiple 
publications reporting on its concentration in garlic, the current 
databases do not offer quantified information for the compound. 
Furthermore, FoodMine identified information for 170 compounds 
that were not previously linked to garlic, either in the USDA or 
FooDB database (see Supplementary Discussion 3).

Taken together, we find that there is a wealth of exceptionally 
detailed information about food composition scattered across mul-
tiple literature sources. The current incompleteness in coverage 
within existing food composition databases is not due to a lack of 
interest in these chemicals or lack of efforts to map these chemical 
building blocks of food. Rather, it reflects the absence of systematic 
in-depth efforts to identify and catalogue the data scattered across 
multiple scientific communities and literature sources. As we dis-
cuss below, high-throughput tools required to scan the scientific  
literature and to overcome these limitations have emerged in 
the past several years. Mobilizing them could set the stage for an  
in-depth and systematic understanding of the ways by which our 
food affects health.

Health implications
The focus on a relatively limited group of nutritional components, 
including salt, sugar, protein and fat has been justified, given the 
important role each of them plays in health and disease. Yet, many 
documented health effects may be linked to untracked chemicals. 
Consider, for example, trimethylamine N-oxide (TMAO)15. Recent 
studies have found that patients with stable coronary heart disease 
had a fourfold greater risk of dying from any cause over the subse-
quent five years if they had high blood levels of TMAO16.

While TMAO and its precursor trimethylamine (TMA) natu-
rally occur in fish and milk, important sources of TMAO in the 
Western diet are L-carnitine and choline, both of which are found 
in red meat17,18. These molecules are metabolized by gut bacteria 
into TMA, which is then converted in the liver to TMAO18 (Fig. 1).  

The Mediterranean diet19, which regularly pairs red meat with fresh 
garlic, derives some of its known health benefits from allicin20, 
which blocks TMA production in the gut, ultimately lowering the 
TMAO concentration in plasma. Taken together, there are at least 
six distinct biochemicals in our diet involved in the TMAO pathway:  
L-carnitine, choline, TMA, TMAO, allicin and 3,3-dimethylbutan-
1-ol (DMB). Yet, only one of them, choline, is tracked and quantified 
in nutritional databases21. The remaining five, despite the key roles 
they play in health, are effectively nutritional dark matter (Fig. 1).

Overall, 37 nutritional components of garlic can be linked to 
diseases according to the Comparative Toxicogenomics Database 
(CTD)22. Indeed, garlic carries vitamins B1, B6 and C, and the min-
erals manganese, copper, selenium and calcium—nutrients whose 
deficiency or excess have been linked to disease such as T2DM, 
Parkinson’s disease and cardiomyopathies. These links confirm the 
important role the currently tracked nutrients play in health23 (see 
Supplementary Discussion 4). At the same time, the CTD reveals 
that 485 of the currently unquantified chemicals in garlic can also 
be linked to multiple therapeutic effects, like the protective action of 
allicin in cardiovascular disease24,25 discussed above.

There is a remarkable parallel between pre-genome biology 
and our current understanding of the health implications of diet. 
Indeed, in the 1980s, detractors of the Human Genome Project 
insisted that only the coding regions, representing 1.4% of all base 
pairs in our DNA, are worth the cost of decoding, labelling the 
remaining 98.6% ‘junk DNA’. Yet, today it is estimated that 66% of 
disease-carrying variants are, in fact, in these non-coding regions. 
Similarly, today the 150 nutritional components tracked in food 
composition tables represent about 0.5% of the 26,625 chemical 
compounds documented in food. The health implications of these 
nutritional components are well studied. Yet, more than 99% of the 
biochemicals present in food, many of which play a role in health 
and disease, are untracked by national databases, with the health 
implications of this largely unexplored nutritional dark matter 
remaining largely unknown. The absence of information on these 
untracked biochemicals could be responsible for inconsistencies in, 
and the irreproducibility of, published results as well as for missing 
health effects, and can also create spurious associations that are not 
replicable by meta-analysis26.

Of the six chemicals involved in this 
pathway, only choline is reported by 

nutritional studies
The other five are undetected
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Fig. 1 | untracked biochemicals and their health implications. Animal products contain L-carnitine, choline and choline-contributing compounds21. These 
molecules are metabolized by gut bacteria into trimethylamine (TMA), which is converted in the liver to trimethylamine-N-oxide17 (TMAO), a compound 
linked to coronary events16. Garlic, extra-virgin olive oil and red wine, staple ingredients of the Mediterranean diet, reduce the production of TMAO through 
allicin and 3,3-dimethylbutan-1-ol (DMB), compounds that block TMA production by gut bacteria. Of the six biochemical compounds involved in this 
pathway, only one, choline, is tracked in food by the USDA. The other compounds are part of the nutritional ‘dark matter’ (in red).

NATure Food | VOL 1 | JANUAry 2020 | 33–37 | www.nature.com/natfood34

http://www.nature.com/natfood


PersPectiveNAtUre FOOD

Advances in network medicine27–31—a post-genome discipline 
that emphasizes the role of comprehensive molecular interactions 
(comprising a molecular interaction network, or interactome) in 
the prevention and treatment of disease—could help us to system-
atically unveil the mechanistic role of the wide array of molecules 
found in our diet. Consider, for example, the polyphenol (–)-epi-
gallocatechin 3-O-gallate (EGCG), an abundant biochemical com-
pound in green tea, with potential therapeutic effects in T2DM. 
Network-based metrics reveal a proximity between 52 human pro-
teins targets of EGCG32 and 83 proteins associated with T2DM30,33. 
This offers multiple mechanistic pathways by which to account 
for the relationship between green tea consumption and its many 
reported effects on health and disease risk34–36, and its glucose-
lowering effects observed using in  vitro and in  vivo models37,38. 
Unveiling the nutritional dark matter could open up new strategies 
for discovering the wide array of molecular mechanisms through 
which food affects health, helping us understand how to use food 
as therapy, and to aid the identification of food biochemicals with 
direct therapeutic impact.

Food affects our health through multiple molecular mechanisms: 
some chemicals serve as a direct source of intermediates for human 
metabolism, while others, such as polyphenols, play a regulatory 
role. Yet many food molecules also feed the microbiome in our gut, 
which metabolizes these compounds into other species that can be 
further transformed by mammalian metabolism (such as TMA and 
TMAO)39,40. Tracking the full chemical composition of the specific 
ingredients is also unavoidable if we wish to gain a better under-
standing of the many ways by which the microbiome responds to 

the vast diversity of our diet, and how best to alter the microbiome 
for therapeutic purposes.

Mapping out the foodome
The current incomplete chemical profiling of food poses a num-
ber of fundamental scientific and methodological challenges, limit-
ing our ability to systematically explore the health implications of 
our diet. Yet, the multiple ‘known unknowns’ of nutrition offer a 
potential roadmap by which to address them. Indeed, a systematic 
mapping of the complete chemical composition of the food we con-
sume, although costly, is feasible, and could be greatly accelerated 
by recent advances in the use of big data and artificial intelligence.

For example, the remarkable governmental and community 
efforts behind databases like the USDA3,41,42, FooDB43, Frida2, 
PhenolExplorer44 and eBasis45 have already resulted in a wealth of 
information on food composition. Rapid advances in metabolic 
reconstructions and biochemical modelling enable us to infer spe-
cific pathways from the genome, and through machine learning we 
can combine metabolic pathway information with the existing food 
composition databases in a systematic fashion, potentially elucidat-
ing the missing chemicals. Indeed, the closer two ingredients are  
on the phylogenetic tree46, the more similar is their expected meta-
bolic pathway structure and biochemical composition. Machine 
learning is ideally suited to combine the known chemical compo-
sition of chosen food ingredients over different taxonomical 
branches with the list of orthologous enzymes in sequenced organ-
isms; the missing chemical information can then be elucidated by 
learning the appropriate distance metric47,48 between organisms and 
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Fig. 2 | Linking the diet to the genome and disease. Our daily eating patterns define a unique biochemical barcode, representing a high-resolution 
description of each person’s individual biochemical exposure through his or her diet, or individual foodome. To assess the individual foodome in a reliable 
fashion, we can take advantage of the smartphone revolution and collect daily food diaries59 via image capture. Combined with genomics and disease 
histories, access to this full biochemical palette could help us expand the widely used genome-wide-association-study-based tools to account for the 
biochemical composition of our eating patterns, and systematically unveil the linkages between specific food biochemicals, genome variations and health.
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clustering correlated groups of pathways and biochemicals49. Such 
efforts, taking full advantage of existing knowledge, could offer 
experimentally verifiable predictions about the missing chemicals 
and their concentration.

Yet, part of the challenge is experimental: the time-consuming, 
low-throughput, structural chemical tools (spectroscopic methods,  
nuclear magnetic resonance, mass spectrometry and so on) may 
need to be fundamentally reengineered into high-throughput 
methods that can scan food with sufficient chemical resolution and 
sensitivity, helping to catalogue the presence and the concentration  
of the vast array of currently unquantified chemical compounds 
in the food supply. Such efforts are complemented by ‘foodomics’, 
a movement aiming to bring omics-technology to the systematic 
exploration of food50,51.

Cooking and food processing alter the chemical composition 
of food, adding chemicals that are absent in raw ingredients and 
transforming others, from emulsifiers to new lipids. Some of these 
changes have well documented health implications, like the pres-
ence of acrylamide (a carcinogenic compound) in fried and baked 
goods and in coffee. While the impact of food processing on basic 
nutritional components is well studied, little is known about the 
impact of processing on the thousands of chemicals found in the 
nutritional dark matter. Equally important, we must account for the 
numerous toxins added to food during cooking, preservation and 
packaging, or accumulated in food according to the environmental 
production conditions, and their effect on health, such as the well 
documented toxicity of highly reactive aldehydes or of persistent 
organic pollutants52.

For nutrition to compete with genetics in accuracy, reach and 
impact, we must organize the information on eating patterns to 
fit the big-data platform that fuels advances in this digital age of 
biomedicine. Indeed, our eating patterns are digital—each of us 
consumes a weighted subset of chemicals found in the food supply. 
The precise subset of chemicals to which each individual is exposed 
defines that person’s individual nutritional-chemical ‘barcode’, or 
his or her ‘foodome’ (Fig. 2). The determinants of this personal 
foodome are complex, from food supply to personal choices, and 
are modulated by geography, culture and socio-economic status. 
Efforts to ensure the traceability53 of food, allowing us to track the 
source and production of the raw material introduced into the food 
chain, together with the environmental and processing conditions 
modulating the individual foodome, will also greatly enhance future 
research in this arena. Our ability to track the nutritional–chemical 
barcode of each individual, and correlate it with individual genetic 
variations and health history, could help merge nutrition with a pre-
cise digital and statistical platform similar to that which fuelled the 
spectacular advances in genomics54,55. Such a platform could help 
us scan systematically for novel causal mutation–chemical–health 
associations that are largely invisible to current hypothesis-driven 
research in nutrition.

To appreciate the transformative potential of a deeper quantita-
tive understanding of the nutritional dark matter, we must realize 
that our genetic predispositions to specific phenotypes and patho-
phenotypes can conceivably be modified by these food-based mol-
ecules. Indeed, while we cannot currently change the genetic basis 
for disease, we regularly modulate the activity of our subcellular 
networks through the food we eat, diminishing the impact of some 
mutations and enhancing the role of others. This differential modu-
lation of subcellular networks explains why individuals with strong 
genetic predispositions to heart disease can lower the chance of 
developing the disease by up to 70% with proper lifestyle choices56, 
within which dietary changes play a dominant role56,57. This find-
ing implies that an accurate mapping of our full chemical exposure 
through our diet could lead to actionable information to improve 
health. Recent trends in nutrition research, aiming to explore the 
synergies, competitions and interactions among the entire matrix of 

what constitutes a food product, increasingly acknowledge the com-
plexity of the problem, and the need for new tools to address it58. 
We must embrace this irreducible complexity to be able to integrate 
changes in the food supply, the role of the microbiome and person-
alized dietary patterns, so that we can eventually offer individually 
tailored food-based therapies and appropriate lifestyle choices for 
disease prevention and lifespan optimization.
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